

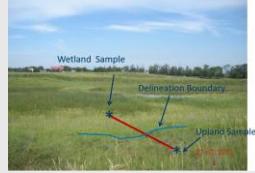
Day Two

MN Wetland Professional Certification Program Introduction Class- Day 2

mn BOARD OF WATER
AND SOIL RESOURCES

1

2



Quiz

1) Sampling transects should be?

- Used when conducting a routine level 1 delineation
- Representative of wetland- upland transition areas
- Located systematically using an established grid
- Randomly located throughout the evaluation area

3

2) What is the maximum average water depth for a special aquatic site to be classified as a wetland?

- 1 foot below the surface
- 8.2 feet below the surface
- 1 foot above the surface
- 3 feet below the surface

3) Wetland boundaries must be delineated using:

- Only the US Army Corps of Engineers 1987 manual for identifying and delineating jurisdictional wetlands
- The hydrogeomorphic method
- The WCA Rulebook
- US Army Corps of Engineers 1987 manual & Regional Supplements

4

4) A seasonally flooded wetland on agricultural land is normally plowed and planted in most years. For delineation purposes, which of the following conclusions is most likely true?

- This is not a jurisdictional wetland
- Normal circumstances are not present
- Normal circumstances exist
- A level 2 delineation is required

5

5) Explain the concept of a Problem area

- Indicators absent to seasonal, or annual variability; or permanent due to the nature of the soils or species
- Including seasonal wetlands, prairie soils, red parent material etc.

6) Explain the concept of an Atypical Situation

- One or more Indicators absent due to human activity or natural events (beavers, fire, river changing course)

6

7) Which of the following can be used for determining the start of the growing season?

- Soil temperature at 41 inches below the surface
- Soil temperature at the soil surface
- Soil temperature at 18 inches below the surface
- Soil temperature at 12 inches below the surface

7

8) What classification system uses Systems, Sub-systems and Classes?

- HGM
- Eggers and Reed
- Cowardin
- Circular 39

9) Which of the following plant communities would be characteristic of a Circular 39 type 6 wetland?

- Sedge meadow
- Bog
- Alder thicket
- Shallow marsh

8

10) Which of the following is not a parameter of the Hydrogeomorphic Method classification system?

- geomorphology
- plant community
- hydrology
- hydraulics

11) A natural process in a wetland that can be scientifically assessed can also be described as a:

- wetland value
- routine assessment method
- exemption
- wetland function

9

Antecedent Precipitation Analysis

mn BOARD OF WATER AND SOIL RESOURCES

Minnesota Water Professional Certification Program

Precipitation | bwsr.state.mn.us

10

Precip

- [Hydrology and Antecedent Precipitation](#)

Hydrology & Antecedent Precipitation

Hydrology & Antecedent Precipitation

Hydrology & Antecedent Precipitation

11

Precip.

What do we mean by Antecedent Precipitation?

The prior or preceding precipitation events or conditions, leading up to the site visit or when aerial photography was taken.

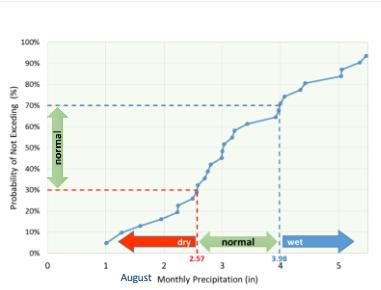
Daily and cumulative total precipitation (inches)

Site Visit: Clean Conditions
50% Rolling Hills, Concord MN

Legend: (dashed line) daily rolling soil, (solid line) site visit, (solid line) normal precip range

Dates: 3/18/18, 3/19/18, 3/20/18, 3/21/18, 3/22/18, 3/23/18, 3/24/18, 3/25/18, 3/26/18, 3/27/18, 3/28/18

12



What does NORMAL mean? What does WET or DRY mean?

13

When in the process is it needed?

Off-site/Level 1 wetland delineation

On-site/Level 2

- Recommend this be done prior to site visit if possible
- Puts better perspective on site data collection

Other Observations Types

- For interpreting Well or Stage Gauge Data
- Establish baseline conditions for a potential wetland bank/monitoring post construction
- Further defining a wetland boundary/questionable wetland area in difficult/are cases
- May not be needed in advance but will be when interpreting data set.

14

How to do it...

Evaluating Antecedent Precipitation Conditions
Using Climate Data Available in Minnesota

May, 2003

• Three-Prior Month Method

- Using State Climatology Tool
- Manual Completion

• Thirty Day Rolling Total

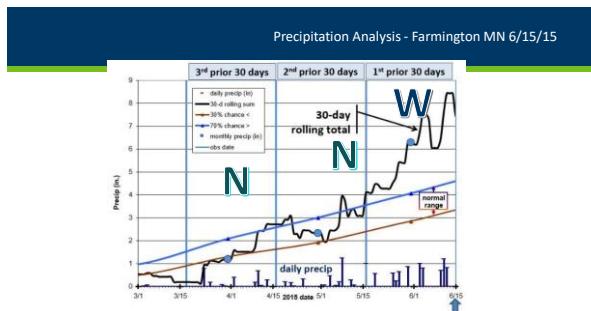
- Summing the prior 30-day precipitation totals for each day and plotting this "rolling total" on a daily basis

• Hybrid Method

- Essentially combines above methods

15

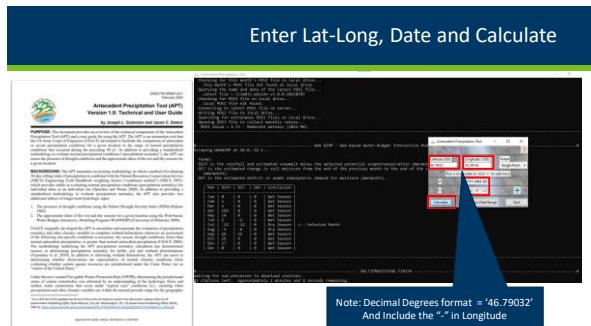
16

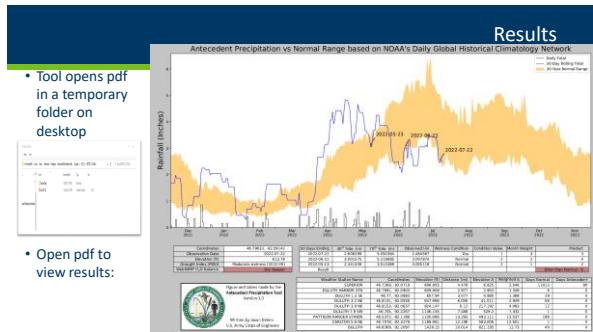

Hybrid Method

30-day rolling total
with
3-prior-month method

17

"Hybrid" method - ERDC/ELTR - WRAP 00 - 01					
Date	15-Jun-2014	Project WDCP		Precip.	
Location	Farrrington, MN	State MN			
County	Dakota				
Soil Name			Growing Season		
Photo/obs date	15-Jun-2015				
		Condition	Condition	Period	Product of
		Dry, Wet,	Value	Weight	Previous 2
		Normal	Value	Value	Columns
Prior Period					
1st prior 30 days		W	3	3	9
2nd prior 30 days		N	2	2	4
3rd prior 30 days		N	2	1	2
				Sum	15
Note: If sum is:		Condition value:			
6 - 9	prior period has been drier than normal	Dry =1			
10 - 14	prior period has been normal	Normal =2			
15 - 18	prior period has been wetter than normal	Wet =3			


18


19

20

21

22

Antecedent Precipitation Evaluation Review

- Important for accurate interpretations/observations
- Done by the delineator
- Included in the report
- Should support your conclusion.
- Not always clear...Best Professional Judgement needed.
- Several methods available, each with certain strengths/weaknesses...
- Discussed in detail via BWSR and other Guidance Documents.

23

Aerial Photo Interpretation and Offsite Methods

24

Overview

87 Manual Definitions:

- Normal Circumstances
- Atypical area
- Problem area

Midwest and NC/NE require aerial review per Chapter 5:

- "Agricultural lands"
- "Wetlands that periodically lack indicators of wetland hydrology"

25

Guidance

St. Paul District
REGULATORY

US Army Corps of Engineers®

March 4, 2015

Guidance for Submittal of Delineation Reports to the St. Paul District Army Corps of Engineers and Wetland Conservation Act Local Governmental Units in Minnesota, Version 2.0

3.7.6 Using Aerial Imagery to Assess Wetland Hydrology
 Procedures have been updated and improved for the assessment of wetland hydrology based on aerial imagery. The interagency approach to off-site wetland determinations on agricultural lands (also referred to as the state "Mapping Conventions" ~~is required~~ for CWA and WCA purposes. Refer to the guidance

Guidance for Offsite Hydrology

26

Guidance

US Army Corps of Engineers®
St. Paul District

July 1, 2016

Guidance for Offsite Hydrology/Wetland Determinations

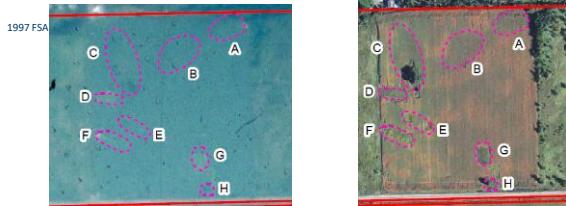
This document replaces all previous Minnesota Board of Water and Soil Resources (BWSR) and St Paul

27

Guidance

- Always use all* imagery in putting the pieces together, and place greatest reliance on more recent years; they tend to best reflect current conditions.

*Use only high quality/good resolution slides. Much better to focus on image quality than normality of antecedent conditions.



28

Guidance

Moving away from FSA images 1979 – 2000

Using more recent and clearer images: 5 normal years

29

Variables

Vegetation Tolerance

Hydrophytic Veg.

Corn

30

Guidance

Vigor and stress responses to wetland conditions

31

Evaluating Images

Signatures:

- CS: Crop stress
- DO: Drowned Out
- NC: Not cropped
- SW: Standing water
- NV: Normal vegetative cover
- NSS: No soil wetness
- AP: Altered pattern
- SS: Soil wetness signature
- CS/DO... (can have multiple, use the /)

Wetland
Signatures are
a positive
“hit”

32

Evaluating Images

Crop Stress (CS)

33

Evaluating Images

Drowned Out (DO)

34

Evaluating Images

NC – not cropped.

35

Evaluating Images

Standing Water (SW)

36

AP – altered pattern

37

Evaluating Images

38

Evaluating Images

Normal Vegetative Cover (NV) or No Soil Wetness (NSS)

39

Evaluating Images

Soil Wetness Signature-SS

- In Bare soil images, dark, or wet-appearing photo tone from early growing season
- May even include some standing water
- Note the drift lines around the edge of the basin

40

What signature(s) do you see?

Crop Stress (CS)	
Drowned Out (DO)	
Not Cropped (NC)	
Standing Water (SW)	
Altered Pattern (AP)	
Wetland Signature (WS)	

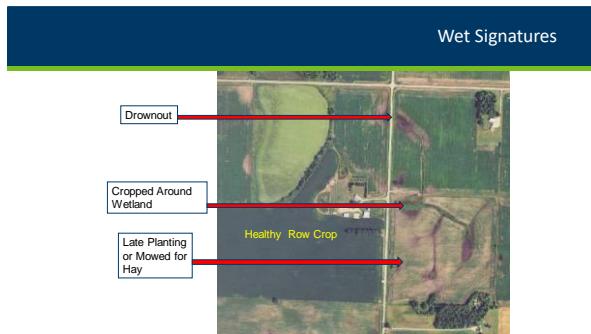
41

Variables

Stem Density

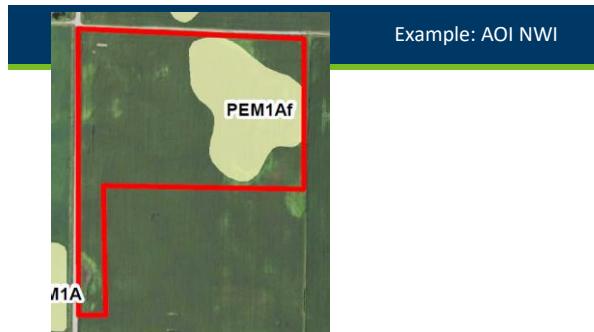

42

43


44

45

46



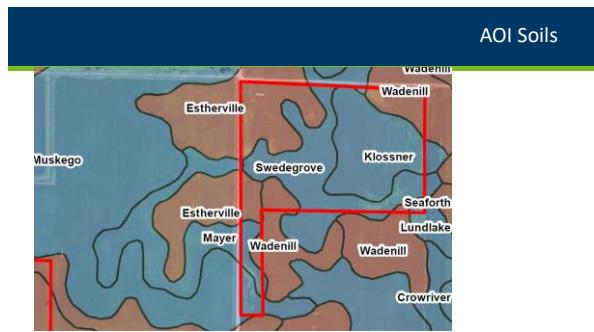
47

Recording on Data Sheet

HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)		Secondary Indicators (minimum of two required)	
Surface Water (A1) Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Crust Deposits (B3) Algal Mat or Crust (B4) Non-Descript Surface (B5) <input checked="" type="checkbox"/> Vegetation Visible on Aerial Imagery (B7) Includes capillary fringe		Surface Soil Cracks (B8) Drainage Patterns (B10) Muds (B11) Dry-Season Water Table (C2) Cropland Burrows (C3) Seepage or Surface Seepage (C4) Geomorphic Position (D2) Shallow Aquicard (D3) Macrotopographic Relief (D4) FAC-Neutral Test (D5)	
Surface Water Present? Yes _____ No _____ Depth (inches): _____ Water Table Present? Yes _____ No _____ Depth (inches): _____ Saturation Present? Yes _____ No _____ Depth (inches): _____ <small>(Includes capillary fringe)</small>		Wetland Hydrology Present? Yes _____ No _____	
<small>Do not record data from maps, monitoring wells, aerial photos, previous inspections, or available data.</small> <small>2016 Joint Guidance for Offsite Hydrology was used.</small>			
Remarks _____			

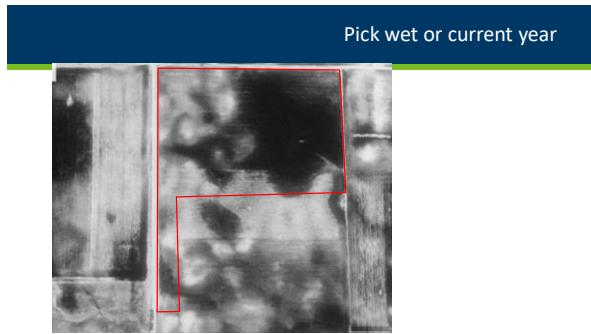
48

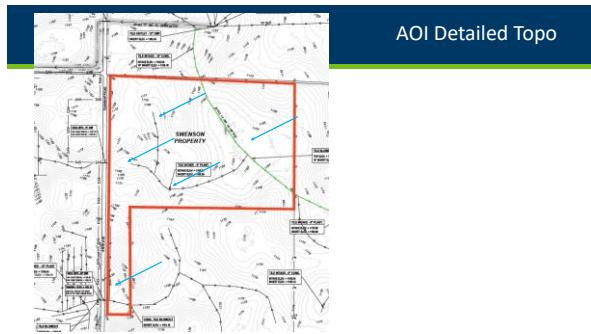
49



50

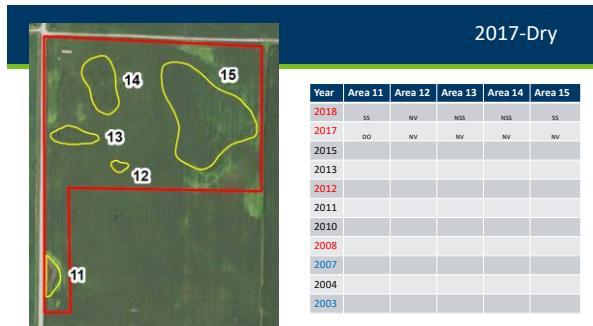
51

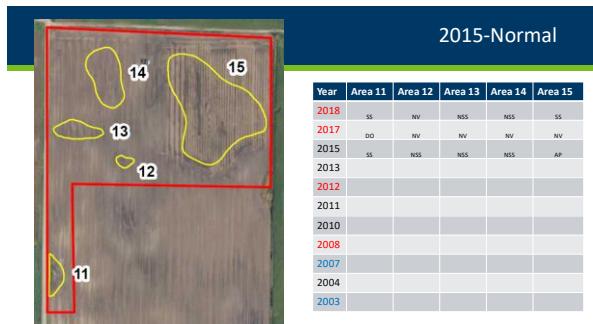




52

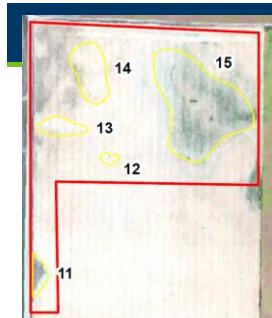
53




54

55

56


57

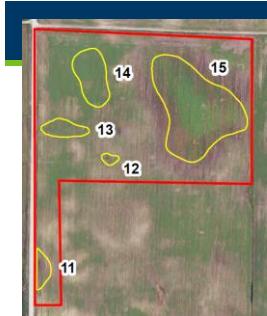
2013-Normal

Year	Area 11	Area 12	Area 13	Area 14	Area 15
2018	SS	NV	NSS	NSS	SS
2017	DO	NV	NV	NV	NV
2015	SS	NSS	NSS	NSS	AP
2013	CS	NV	NV	NV	CS
2012					
2011					
2010					
2008					
2007					
2004					
2003					

58

2012-Dry

Year	Area 11	Area 12	Area 13	Area 14	Area 15
2018	SS	NV	NSS	NSS	SS
2017	DO	NV	NV	NV	NV
2015	SS	NSS	NSS	NSS	AP
2013	CS	NV	NV	NV	CS
2012	DO	NSS	NV	NV	CS
2011					
2010					
2008					
2007					
2004					
2003					


59

2011-Normal

Year	Area 11	Area 12	Area 13	Area 14	Area 15
2018	SS	NV	NSS	NSS	SS
2017	DO	NV	NV	NV	NV
2015	SS	NSS	NSS	NSS	AP
2013	CS	NV	NV	NV	CS
2012	DO	NSS	NV	NV	CS
2011	DO	CS	NV	NV	CS
2010					
2008					
2007					
2004					
2003					

60

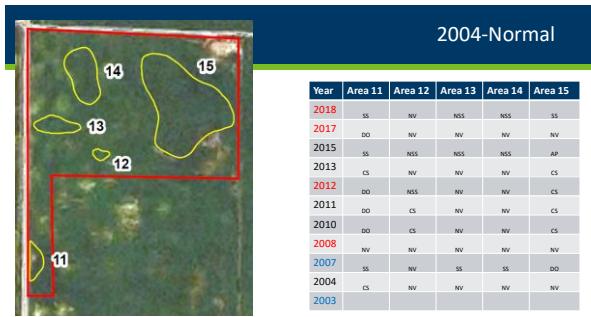
2010-Normal

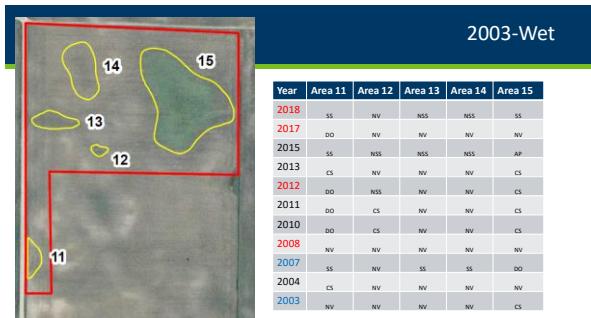
Year	Area 11	Area 12	Area 13	Area 14	Area 15
2018	SS	NV	NSS	NSS	SS
2017	DO	NV	NV	NV	NV
2015	SS	NSS	NSS	NSS	AP
2013	CS	NV	NV	NV	CS
2012	DO	NSS	NV	NV	CS
2011	DO	CS	NV	NV	CS
2010	DO	CS	NV	NV	CS
2008					
2007					
2004					
2003					

61

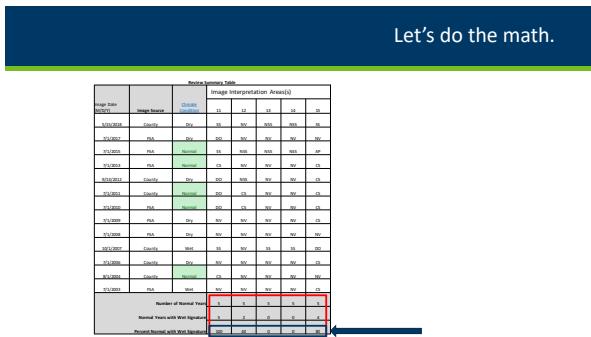
2008-Dry

Year	Area 11	Area 12	Area 13	Area 14	Area 15
2018	SS	NV	NSS	NSS	SS
2017	DO	NV	NV	NV	NV
2015	SS	NSS	NSS	NSS	AP
2013	CS	NV	NV	NV	CS
2012	DO	NSS	NV	NV	CS
2011	DO	CS	NV	NV	CS
2010	DO	CS	NV	NV	CS
2008	NV	NV	NV	NV	NV
2007					
2004					
2003					


62


2007-Wet

Year	Area 11	Area 12	Area 13	Area 14	Area 15
2018	SS	NV	NSS	NSS	SS
2017	DO	NV	NV	NV	NV
2015	SS	NSS	NSS	NSS	AP
2013	CS	NV	NV	NV	CS
2012	DO	NSS	NV	NV	CS
2011	DO	CS	NV	NV	CS
2010	DO	CS	NV	NV	CS
2008	NV	NV	NV	NV	NV
2007	SS	NV	SS	SS	DO
2004					
2003					


63

64

65

66

Document

Hydric Soils present ¹	Identified on NWI or other wetland map ²	Percent with wet signatures from Exhibit 1	Field verification required ³	Wetland?
Yes	Yes	30-50%	No	Yes
Yes	Yes	<30%	Yes	Yes, if other hydrology indicators present
Yes	No	>50%	No	Yes
Yes	No	30-50%	Yes	Yes, if other hydrology indicators present
Yes	No	<30%	No	No
No	Yes	30-50%	No	Yes
No	Yes	<30%	No	No
No	No	>50%	Yes	Yes, if other hydrology indicators present
No	No	30-50%	Yes	Yes, if other hydrology indicators present
No	No	<30%	No	No

Area	Hydric Soils Present	Identified on NWI or other wetland map	Percent with wet signatures from Exhibit 1	Other hydrology indicators present	Wetland?
11	Yes	No	100	NA	Yes
12	Yes	No	40	NA	No
13	Yes	No	0	NA	No
14	Yes	No	0	NA	No
15	Yes	Yes	80	NA	No

67

Document

Hydric Soils present ¹	Identified on NWI or other wetland map ²	Percent with wet signatures from Exhibit 1	Field verification required ³	Wetland?
Yes	Yes	30-50%	No	Yes
Yes	Yes	<30%	Yes	Yes, if other hydrology indicators present
Yes	No	>50%	No	Yes
Yes	No	30-50%	Yes	Yes, if other hydrology indicators present
Yes	No	<30%	No	No
No	Yes	30-50%	No	Yes
No	Yes	<30%	No	No
No	No	>50%	Yes	Yes, if other hydrology indicators present
No	No	30-50%	Yes	Yes, if other hydrology indicators present
No	No	<30%	No	No

Area	Hydric Soils Present	Identified on NWI or other wetland map	Percent with wet signatures from Exhibit 1	Other hydrology indicators present	Wetland?
11	Yes	No	100	NA	Yes
12	Yes	No	40	NA	No
13	Yes	No	0	NA	No
14	Yes	No	0	NA	No
15	Yes	Yes	80	NA	No

68

Document

Hydric Soils present ¹	Identified on NWI or other wetland map ²	Percent with wet signatures from Exhibit 1	Field verification required ³	Wetland?
Yes	Yes	30-50%	No	Yes
Yes	Yes	<30%	Yes	Yes, if other hydrology indicators present
Yes	No	>50%	No	Yes
Yes	No	30-50%	Yes	Yes, if other hydrology indicators present
Yes	No	<30%	No	No
No	Yes	30-50%	No	Yes
No	Yes	<30%	No	No
No	No	>50%	Yes	Yes, if other hydrology indicators present
No	No	30-50%	Yes	Yes, if other hydrology indicators present
No	No	<30%	No	No

Area	Hydric Soils Present	Identified on NWI or other wetland map	Percent with wet signatures from Exhibit 1	Other hydrology indicators present	Wetland?
11	Yes	No	100	NA	Yes
12	Yes	No	40	NA	No
13	Yes	No	0	NA	No
14	Yes	No	0	NA	No
15	Yes	Yes	80	NA	No

69

Document

Hydric Soils present ¹	Identified on NWI or other wetland map ²	Percent with wet signatures from Exhibit 1	Field verification required ³	Wetland?
No	No	<30%	No	Yes
Yes	Yes	>30%	Yes	Yes, if other hydrology indicators present
Yes	No	>30%	No	Yes
Yes	No	30-50%	Yes	Yes, if other hydrology indicators present
Yes	No	<30%	No	No
No	Yes	<30%	No	Yes
No	Yes	30-50%	No	Yes
No	Yes	>30%	No	No
No	No	>30%	Yes	Yes, if other hydrology indicators present
No	No	30-50%	Yes	Yes, if other hydrology indicators present
No	No	<30%	No	No

Area	Hydric Soils Present	Identified on NWI or other wetland map	Percent with wet signatures from Exhibit 1	Other hydrology indicators present	Wetland?
11	Yes	No	100	NA	Yes
12	Yes	No	0	NA	No
13	Yes	No	0	NA	No
14	Yes	No	0	NA	No
15	Yes	Yes	80	NA	No

70

Conclusion: Final Determination

71

Other uses

Level 1 Delineations

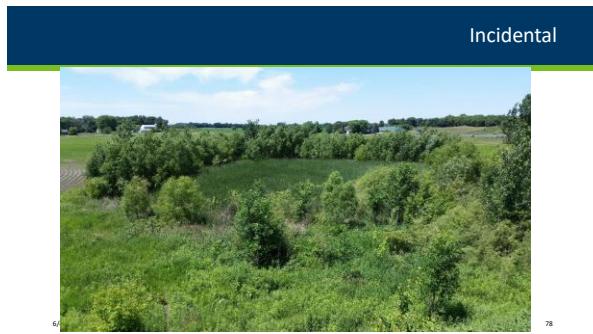
Definition Method	Review of existing mapping resources	Site Visit	Sampling Approach	Complete Field Data Forms	Field Staking of Wetland Boundaries
Routine Level 1	Yes	Sometimes	Offsite	No	No
Routine Level 2	Yes	Yes	Onsite, qualitative	Yes	Yes
Comprehensive	Yes	Yes	Onsite, quantitative	Yes	Yes

WCA Application Type Examples	Commonly Used Delineation Method
Temporary impact under No-Loss	Routine Level 1
Banking application: pre-application scoping	Routine Level 1
Banking application: full application	Routine Level 2
Road Program Wetland Impact Documentation—Road project through a large continuous wetland	Routine Level 1
Road Project: Wetland Impact Documentation—Scattered wetlands within an instruction corridor	Routine Level 2
Replacement plan	Routine Level 2
Enforcement actions	Routine Level 2 or Comprehensive
Wetland boundary approval (no project application)	Routine Level 2
Agricultural exemption determination (8420.0420, Subpart 2A)	Routine Level 1

72

73

74


75

76

77

78

Final Point

- Except for Level 1 delineations, the results of aerial imagery review are not necessarily the final determination.
- Other data to support conclusions.
- Results do not override site specific data (Level 2, Level 3, Comprehensive).

6/4/2025

WDCP Training | bwcr.state.mn.us

79

79

Basic Soil Concepts

mn BOARD OF WATER
AND SOIL RESOURCES

80

Overview

- Basics of Soil
- Soil formation
- Landscape position
- Soil Properties
 - Texture
 - Color
- Hydric soil development
- Web Soil Survey
- Interpreting soil reports

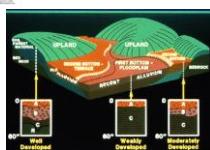
- Hydric soil indicators
 - All
 - Fine
 - Sandy
- Common soil indicators

81

What is Soil?

- Natural body that occurs on the land surface, occupies space, and is characterized by one or both of the following:
- Horizons or layers, or
- The ability to support rooted plants in a natural environment
- Upper limit is air or shallow (>2.5 m) water
- Lower limit is either bedrock or the limit of biological activity
- Lower limit for classification set at an arbitrary 2 m

82

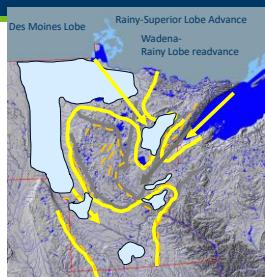


Factors That Influence Soil Development

- Climate- weather conditions prevailing over long period of time
- Parent material- geologic material from which soils form
- Topography- landscape position and slope processes
- Organisms- essential role of microbes in the soil, includes humans
- Time- soil doesn't "age", it develops. vegetation, organisms and climate "act on" parent material and topography to develop soil.

Factors That Influence Soil Development

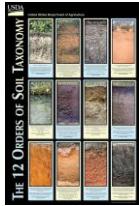
83



Parent Material Relates to Glacial Geology

Recent Glacial Geology of MN

84

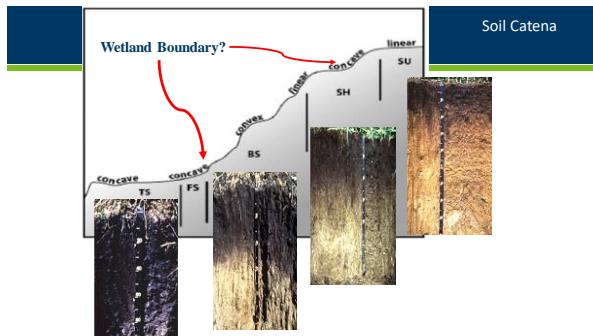


Soil Taxonomy

- 12 orders of soil taxonomy

- Alfisols: wide range of climate, forest soils, clay in subsoil
- Andisols: volcanic, high nutrient
- Aridisols: desert soils
- Entisols: recent deposition, dunes, slopes, floodplains, sandy
- Gelisols: permafrost, high latitudes and/or elevation
- Histosols: high organic, most saturated year round
- Inceptisols: wide range of climate, moderate weathering
- Mollisols: "prairie soils", dark colored, high organic
- Oxisols: highly weathered tropical, stable, low fertility
- Spodosols: coarse-textured, acidic, conifer forests
- Ultisols: humid climate, weathered, clay-rich
- Vertisols: high content of expanding clays, Red River Valley

85



86

Two Categories of Soil Material - Mineral Soil/Horizons

Mineral horizons

- Primarily sand, silt, and clay, with varying amounts of organic matter

87

Organic Matter Decomposition

- Fibric (peat)
 - Least decomposed
 - Plant fibers identifiable
 - After rub - >40% of fibers still visible (2/3)
- Hemic (mucky peat)
 - Intermediate decomposition
- Sapric (muck)
 - Most decomposed, <1/3 ID of plant fibers
 - <1/6 of fibers visible after rubbing

88

Key Soil Properties

Properties that are important to hydric soil development and recognition:

- Horizons- layer of soil with similar physical, chemical, and biologic properties
- Texture- relative proportion of soil particles (sand, silt, clay)
- Structure- arrangement of solid parts and of the pore spaces located between them
- Permeability- ability of water to move through a material
- Color- hue, value, chroma
- Organic matter- percent, thickness, and level of organic decomposition
- Drainage- presence of natural and human drainage on a landscape

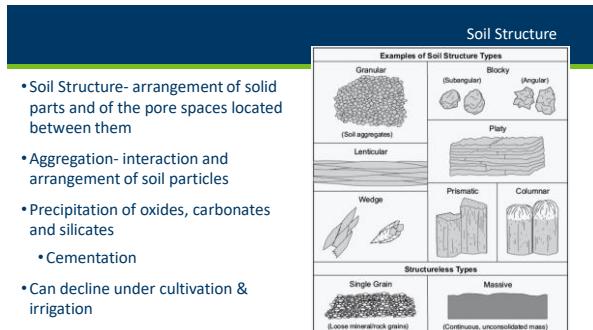
89

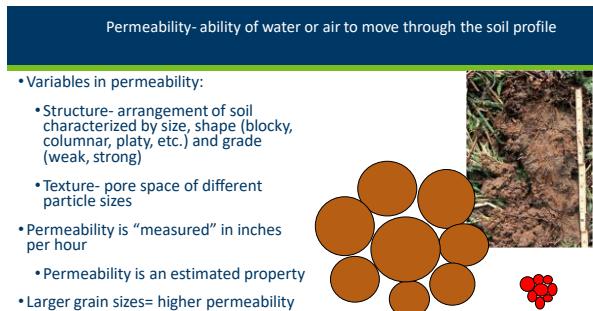
Soil Horizon- layer of soil with similar physical, chemical, and biologic properties

Legend:

- O Horizon- Organic horizon, thickness varies
- A Horizon- Organic accumulation (typically ~10%), ideally granular structure
- E Horizon- Coloring agents (Fe, Organics) removed
- B Horizon- Subsoil accumulation of minerals, organics, and sometimes chemicals, blocky structure
- C Horizon - Similar to parent material, often less developed with little structure
- R Horizon- Parent material






90

91

92

93

Capillary Fringe

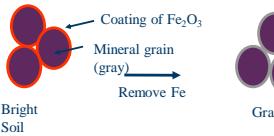
- Based upon permeability
- The zone above the free water table that is effectively saturated
- Water held at tension
- Theoretical values much higher than "real life"
- Difficult to measure

94

Coloring Agents in Soil

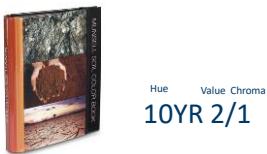
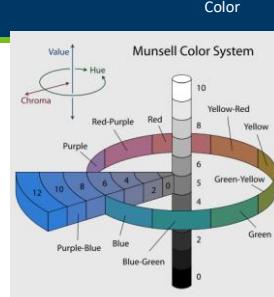
- Organic matter
 - OM will mask all other coloring agents.
- Iron (Fe)
 - brown colors are the result of Fe oxide stains coating individual particles
- Manganese (Mn)
 - resulting in a very dark black or purplish black color
- Calcium
- Lack of coatings
 - Color of the mineral soil grains (stripped)

95



Soil Color

"Bright-colored" soil is bright because the gray-colored mineral grains are coated with a thin layer of "paint" formed by Fe oxides. Stripping the paint off the particles leaves the mineral grains exposed.

96

Color

- Hue- the spectrum color
- Value- lightness or darkness
- Chroma- “purity” or grayness of color

97

Color

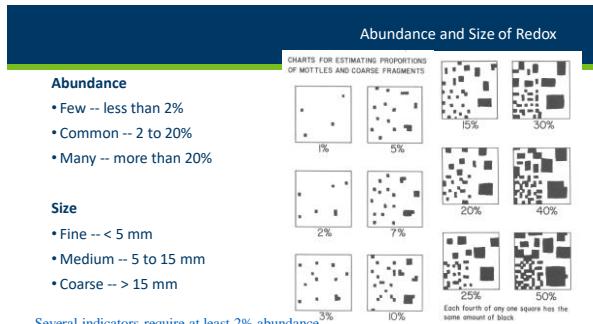
- Matrix (predominant) color
- Color of redoximorphic features (concentration or depletion)
- Contrast, abundance, location, and size of redox features

98

Reading Soil Color

- Optimum conditions
- Natural light
- Clear, sunny day
- Midday
- Light at right angles
- Soil moist

99



100

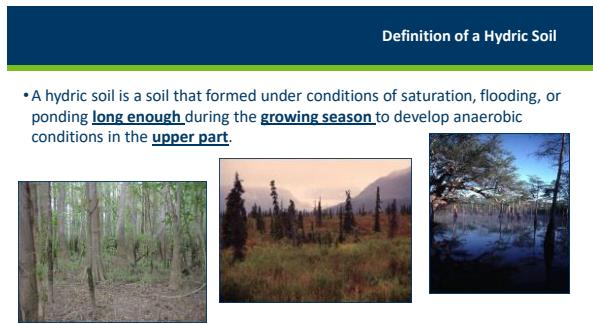
Contrast

• Contrast refers to the degree of visual distinction between associated colors

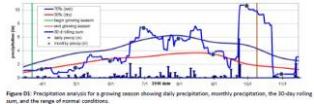
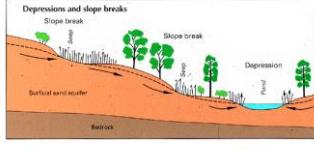
- Faint -- evident only on close examination
- Distinct -- readily seen at arms length
- Prominent -- contrast strongly

Several indicators require distinct or prominent contrast!

[†] If compared colors have both a value ≥ 3 and a chroma of ≥ 2 , the contrast is Faint, regardless of hue differences.

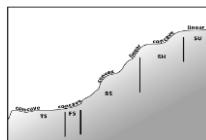
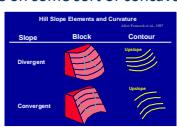


101

102

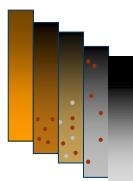
Landscape and formation of hydric soils



- Landscape position
 - Surface shape (linear, concave, convex)
 - Erosional or depositional
- Hydraulics
 - How water moves
- Hydroperiod- seasonal pattern of water table depth in a wetland
 - Long term- organic
 - Seasonal inundation- thick O, dark A
 - Seasonal saturation- thin O
 - Floodplain- thin, stratified layers

103

Landscape Position

- Location relative to other landforms
- Critically influences water flow and soil formation
- Most wetlands, even groundwater seeps, are on some sort of concave surface

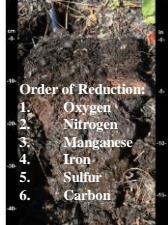

104

Hydric Soil Development

Hydric soils indicators develop in **anaerobic** conditions by the process of :

1. Reduction and Re-oxidation of Iron
2. Organic Matter Accumulation

Foundation of the Field Indicator Manual.


105

Hydric Soil Development

Soil microbes that drive reduction require:

1. Anaerobic conditions i.e. (saturated soil)
2. Organic matter (energy source)
3. Soil temperature warm enough for microbial respiration (>41F)
4. Duration of conditions (Time)

In anaerobic conditions decomposition slows and leads to organic accumulation

106

Conceptual overview of aquic conditions

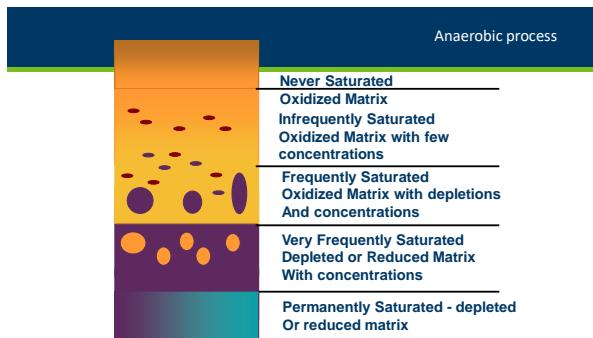
- Here's what happens when water moves into a soil profile:
 - Downward movement
 - Lateral movement
 - Lose some things
 - Changes in chemical state in others

Think old car left in the elements- chemical reactions leave "rust in the soil"

107

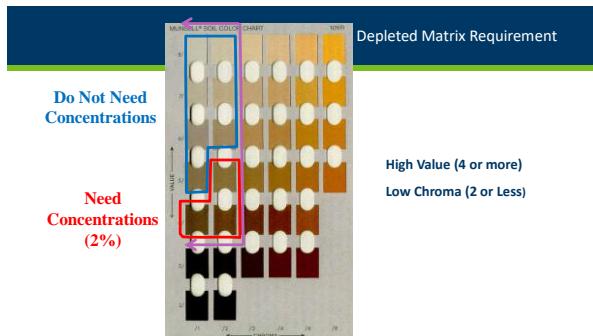
Change in the state of iron

- Available O₂, NO₃, and Mn depleted


• Bluish Grey when reduced

• Grey when depleted from soil

• Orange or Red when oxidized


108

109

110

111

Gleyed Matrix Requirements

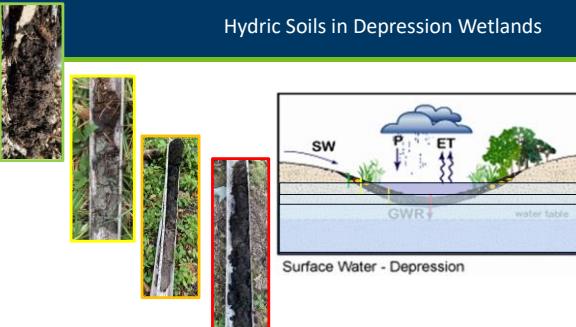
Gleyed Matrix

- Iron Present, but in reduced state (Fe²⁺) Gleyed color with value ≥ 4

Color chart notes:

- Gley colors noted as: 10GY 4/1
- Darkest black noted as: N 2.5/0
- Hues on bottom of page

112



Hydric Soils in Depression Wetlands

Surface Water - Depression

113

Hydric Soil Indicators

BOARD OF WATER AND SOIL RESOURCES

Minnesota Wetland Professional Certification Program

114

Field Indicators of Hydric Soils

United States
Natural Resources
Conservation Service

National Technical Committee with
the Natural Resources Conservation Service
Committee on Hydric Soils

**Field Indicators of
Hydric Soils in the
United States**

A Field Guide for Identifying and Delineating
Hydric Soils, Version 8.2, 2018

**Natural Resources
Conservation Service**

- National Technical
Committee for Hydric
Soils

Used for **on-site
verification** of hydric soils

Field Indicators of Hydric Soils

United States
Natural Resources
Conservation Service

National Technical Committee with
the Natural Resources Conservation Service
Committee on Hydric Soils

**Field Indicators of
Hydric Soils in the
United States**

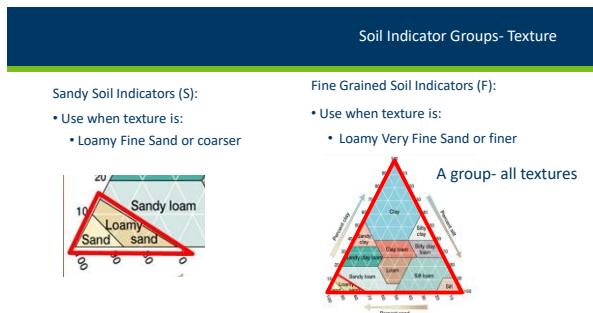
A Field Guide for Identifying and Delineating
Hydric Soils, Version 8.2, 2018

**Natural Resources
Conservation Service**

- National Technical
Committee for Hydric
Soils

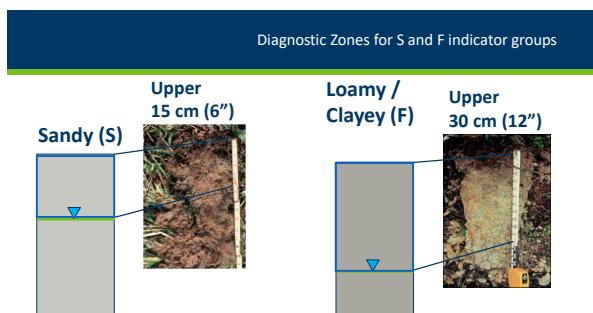
Used for **on-site
verification** of hydric soils

115

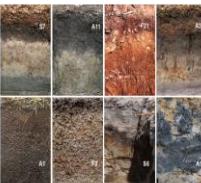

The figure consists of two main parts. On the left is a circular diagram divided into three segments: 'Regions' (top), 'Textures' (middle), and 'Diagnostic Zones' (bottom). An arrow points from 'Diagnostic Zones' to the right. On the right is a map of the United States titled 'Land Resource Region Boundaries Fit to Census Townships'. The map is color-coded into various regions, with a legend on the left defining the colors: Dark Blue for 'Original LRR Boundaries', Light Blue for 'The Textures', Green for 'The Diagnostic Zones', and Yellow for 'Transition Zone Boundaries'. A scale bar and a north arrow are also present on the map. Below the map is the text 'May 2008'.

116

- Use regardless of texture(s)
 - All Mineral
 - All Organic
- Typically, organic matter influences near the surface
- Includes smell
 - Rotten egg


117

118



119

120

 Field Indicators of Hydric Soils in the United States
A Guide for Identifying and Delineating Hydric Soils, Version 3.0, 2024

Credit: USDA & NRCS for following pictures

Key terms to help interpret indicators:

- Aquic- moisture regime, reducing regime virtually free of dissolved oxygen
- Histic- saturated organic horizon
- Epipedon-horizon near the surface
- Depletions- areas of low chroma where oxides have been stripped away
- Concentrations-zones where oxides have accumulated

121

A1—Histosol (for use in all LRRs) or Histel (for use in LRRs with permafrost). Classifies as a Histosol (except Folist) or as a Histel (except Folist).

User Notes: In a Histosol, typically 40 cm (16 inches) or more of the upper 80 cm (32 inches) is organic soil material (by weight) of which 12 to 18 percent or more, depending on the clay content of the soil. These materials include muck (sapric soil material), peat (hemic soil material), and peat (fibric soil material). See *Keys to Soil Taxonomy* (Soil Survey Staff, 2014) for a complete definition.

Figure 1—Aerial view of a wetland area. The photograph shows a mix of dark, saturated soil and water, with some sparse vegetation visible.

Format of Indicator Descriptions

- Alpha-numeric designation
 - A1
- Short name
 - Histosol
- Applicable land resource regions (LRR)
 - Use in all LRRs
- Description of the indicator
- User notes
 - Additional information, explanation and guidance
- Supplement adds regional likelihood, locations

122

A1- Histosol

A1. Histosol: Classifies as a Histosol. A Histosol has a layer of organic matter accumulation of ≥ 16 inches in the upper 32 inches of soil material.

• Use in all LRRs

A1—Histosol (for use in all LRRs) or Histel (for use in LRRs with permafrost). Classifies as a Histosol (except Folist) or as a Histel (except Folist).

User Notes: In a Histosol, typically 40 cm (16 inches) or more of the upper 80 cm (32 inches) is organic soil material (fig. 7). Organic soil materials have organic carbon contents (by weight) of 12 to 18 percent or more, depending on the clay content of the soil. These materials include muck (sapric soil material), peaty peat (hemic soil material), and peat (fibric soil material). See *Keys to Soil Taxonomy* (Soil Survey Staff, 2014) for a complete definition.

Figure 2—A1—Histosol on Hydric. This soil has more than 40 cm (16 inches) of organic material, starting at the soil surface.

123

A2- Histic Epipedon

Histic epipedon- saturated, organic horizons 8 inches or more thick in the upper part

- Applicable land resource regions (LRR)
 - Use in all LRRs

A2.—Histic Epipedon. For use in all LRRs. A histic epipedon underlain by mineral soil material with chroma of 2 or less.

User Notes: Most histic epipedons are surface horizons 20 cm (8 inches) or more thick of organic soil material (fig. 8). Aquic conditions or artificial drainage is required. See *Keys to Soil Taxonomy* (Soil Survey Staff, 2014) for a complete definition.

Figure 8.—Indicators A2 (Histic Epipedon) and A3 (Black Histic). This soil meets the depth criterion of A2 and the color and depth criteria of A3. The black color, a requirement of A3, results from the accumulation of

124

A3- Black Histic

- A layer of peat, mucky peat, or muck 8 in or more thick that starts at a depth of ≤ 6 in from the soil surface; has hue of 10YR or yellower, value of 3 or less, and chroma of 1 or less; and is underlain by mineral soil material with chroma of 2 or less.

- Applicable land resource regions (LRR)

- Use in all LRRs **A3.—Black Histic.** For use in all LRRs. A layer of peat, mucky peat, or muck 20 cm (8 inches) or more thick that starts at a depth of ≤ 15 cm (6 inches) from the soil surface; has hue of 10YR or yellower, value of 3 or less, and chroma of 1 or less; and is underlain by mineral soil material with chroma of 2 or less.

User Notes: Unlike indicator A2, this indicator does not require proof of aquatic conditions or artificial drainage (fig. 8).

A close-up photograph of a dark, textured surface, likely soil or charcoal, showing small white specks. A vertical scale is visible on the left side of the frame, with markings at 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. The image is oriented vertically.

Figure 8.—Indicators A2 (Histic Epipedon) and A3 (Black Histoc). This soil meets the depth criterion of A2 and the color and depth criteria of A3. The black color, a requirement of A3, results from the accumulation of organic matter in the surface horizon.

125

A11- Depleted Below Dark Surface

- Applicable land resource regions (LRR)

- **Use in all MN LRRs**
 - A11. -Depleted Below Surface.** For use in all LRRs, except for W, X, and Y, for testing in LRRs W, X, and Y. A layer with a depleted or glazed matrix that has 60 percent or more chrome of 2 or less, starting at a depth of 20 cm (8 inches) from the soil surface, and having a minimum thickness of either:
 - a. 15 cm (6 inches), or
 - b. 5 cm (2 inches) if the 5 cm consists of

b. **Organic loamy, or clayey layers:** above the depleted or glazed matrice must have value of 3 or less and chrome of 2 or less starting at a depth < 15 cm (6 inches) from the soil surface and extend to the depleted or glazed matrice. Any sandy material above the depleted or glazed matrice must have value of 3 or less and chrome of 1 or less starting at a depth < 15 cm (6 inches) from the soil surface and extend to the depleted or glazed matrice. Within a 10 or 15 cm hand lens, at least 70 percent of the visible sand particles must be masked with organic material. Observed without a hand lens, the sand particles appear to be close to 100 percent masked.

A grayscale image showing a detailed, irregular surface texture, possibly a rock or mineral sample. A vertical scale bar is positioned on the left side, with numerical markings from 0 to 10. A horizontal scale bar is located at the bottom right, with the text "12''" indicating a length of 12 inches.

Figure 16.—Indicator A11 (Depleted Below Dark Surface). This soil has a thick dark surface horizon that meets the requirements of indicator A11. Unlike the matrix in figure 15, the depleted matrix below the dark surface horizon in this soil starts at a depth of about 29 cm, which is too deep to meet the requirements of Indicator E3 (Depleted

126

- Applicable land resource regions (LRR)
- Use in all LRRs
- User notes
 - Most often associated with overthickened soils in concave landscape positions.

A12- Thick Dark Surface

Figure 17—Indicators A12 (Thick Dark Surface). Deep soil color is often associated with overthickened soils in concave landscape positions. The depth of the dark surface is about 15 cm.

A12—Thick Dark Surface. For use in all LRRs. A layer that has a dark surface at least 15 cm thick with a depleted or pealed matrix that has 60 percent or more chroma, or a layer that has a dark surface at least 15 cm thick with a dark surface. The layer(s) above the depleted or glyptal matrix and starting at a depth <15 cm (if included from the soil surface) must have value of 2.5 or less and chroma of 1 or less to a depth of at least 30 cm (12 inches) and value of 3 or less and chroma of 1 or less to a depth of at least 45 cm (18 inches) from the soil surface. In any sandy material above the depleted or glyptal matrix, soil particles must be masked with organic material, viewed through a 10x or 15x hand lens. Observed value of 2.5 or less and chroma of 1 or less appears to be 100 percent masked.

127

- Applicable land resource regions (LRR)
- Use in all LRRs

F3—Depleted Matrix. For use in all LRRs, except W, X, and Y; for testing in LRRs W, X, and Y. A layer that has a depleted matrix with 60 percent or more chroma of 2 or less and that has a minimum thickness of either:

- a. 5 cm (2 inches) if the 5 cm starts at a depth \leq 10 cm (4 inches) from the soil surface, or
- b. 15 cm (6 inches), starting at a depth \leq 25 cm (10 inches) from the soil surface.

F3- Depleted Matrix

Figure 20—Indicators F3 (Depleted Matrix). This soil has value of 2 or more and chroma of 1 or less to a depth of 15 cm (6 inches) from the soil surface. The layer(s) above the depleted matrix starts at a depth of 15 cm from the soil surface. The minimum thickness requirement is only 5 cm.

128

- Applicable land resource regions (LRR)
- Use in all LRRs

F6—Redox Dark Surface. For use in all LRRs, except W, X, and Y; for testing in LRRs W, X, and Y. A layer that is at least 10 cm (4 inches) thick, starting at the soil surface, and has:

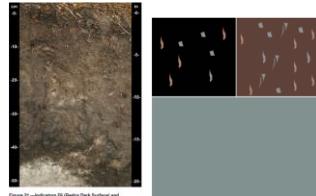
- o Matrix value of 2 or less and chroma of 1 or less and 25 percent or more distinct or prominent redox strings, or:
- o Matrix value of 3 or less and chroma of 2 or less and 25 percent or more distinct or prominent redox strings, or:
- o Matrix value of 3 or less and chroma of 2 or less and 25 percent or more distinct or prominent redox concentrations occurring as soil masses or pore linings.

F6- Redox Dark Surface

Figure 21—Indicators F6 (Redox Dark Surface) and F7 (Depleted Dark Surface). A soil that meets the requirements of indicator F6 or indicator F7 also meets the requirements of indicator F7. If the dark surface layer has depletions, it most likely also has concentrations.

129

F7- Depleted Dark Surface


- Applicable land resource regions (LRR)

- Use in all LRRs

- User notes
 - Careful to not mistake an E horizon for depletions!

F7.—Depleted Dark Surface. For use in all LRRs, except *W*, *X*, and *Y*; for testing in LRRs *W*, *X*, and *Y*. Redox depletions with value of 5 or more and chroma of 2 or less in a layer that is at least 10 cm (4 inches) thick, starting at a depth ≥ 20 cm (8 inches) from the mineral soil surface, and has:

- Matrix value of 3 or less and chroma of 1 or less and 10 percent or more redox depletions, or
- Matrix value of 3 or less and chroma of 2 or

F7 (Depleted Dark Surface). A soil that meets the requirements of indicator F7 commonly also meets the requirements of indicator F6. If the dark surface layer has depletions, it most likely also has concentrations.

130

S5- Sandy Redox

- Applicable land resource regions (LRR)
 - Use in all LRRs

- Use in all LRRs

S5.—Sandy Redox. For use in all LRRs, except for Q, V, W, X, and Y. A layer starting at a depth ≤ 15 cm (6 inches) from the soil surface that is at least 10 cm (4 inches) thick and has a matrix with 60 percent or more chroma of 2 or less and 2 percent or more distinct or prominent redox concentrations occurring as soft masses and/or pore linings.

Figure 22.—Indication of the presence of *Leptothrix* in a sample of water which meets the requirements of 2 or less coliforms per 100 ml. by the chromate method.

131

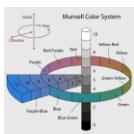
Figure 25.—Indicator F3 (Depleted Mitis). This soil has a value of 4 or more and chlorine of 2 or less and nitrate concentrations starting at a depth of 8 cm. Since the

132

Problematic Hydric Soils

- Covered in Chapter 5 of the regional supplements
- Problematic hydric soils are the norm in some landscapes

- **Red** Parent Material (*inhibited, or difficult to see redox features*)
- Active floodplains (*deposition of new material*)
- Drained systems (*relict hydric indicators*)
- **High Value** (*bright*) / Low Chroma (*grey*),
- Thick prairie soils
- Sandy soils



133

Review

- Soil formation
 - Parent material, landscape position, horizons
- Soil Properties
 - Texture
 - Sand, silt, clay
 - Color
 - Hue, value, chroma
- Hydric soil development
 - Anaerobic conditions, reduction, organic accumulation

- Hydric soil indicators
 - All, Fine, Sandy
- Common soil indicators
 - Organic Indicators (A1, A2, A3)
 - Depleted Matrix (A11, A12, F3)
 - Redoximorphic features (F6, S3)

134

Soil Survey Overview

135

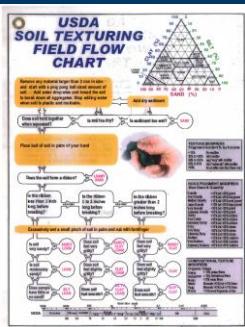
Attributes from Soil Survey to help understand Functions

- Geomorphic description
 - Landform
 - Slope shape
 - Parent material
- Typical profile
 - Textures
 - Depths
- Properties and qualities
 - Slope
 - Restrictive layer
 - Drainage class
 - Depth to water table
 - Frequency of flooding/ponding

Description of Normanna

Setting:
Landform: Moraines
Down-slope shape: (two-dimensional): Summit, backslope
Across-slope shape: Linear
Parent material: Loamy material over dense loamy till

Typical profile:


A: 0 to 4 inches: loam
Bw: 4 to 45 inches: gravelly sandy loam
2Bw, BC: 45 to 48 inches: gravelly sandy loam
2BCd: 48 to 80 inches: gravelly sandy loam

Properties and qualities:

Slope: 10 to 20 degrees
Depth to restrictive feature: 30 to 60 inches to dense material
Natural drainage class: Moderately well drained
Capacity to transmit water: Capacity to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 5.2 inches)

136

Texture by Feel

The chart includes a legend for soil textures: Sand, Loamy sand, sandy loam, loam, clay loam, clay, and loamy clay. It also includes a flowchart with steps like "Is the soil gritty?" and "Is the soil heavy?" leading to specific textures.

Texture by Feel

137