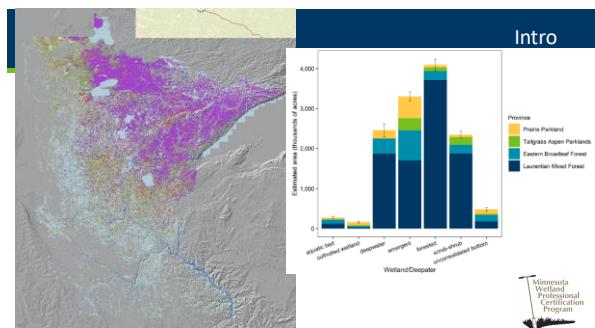


Day One

Introduction to Wetland Delineation & Regulation

mn BOARD OF WATER AND SOIL RESOURCES

1



2

Class Purpose

The purpose of the MWPCP Introduction to Wetland Delineation and Regulation Course is to teach the fundamental subjects of wetland delineation and regulation in Minnesota. The course takes a field-based, multi-disciplinary approach to wetland science and resource management for private and public sector professionals.

Subjects covered include a comprehensive study of the 3-parameter (hydrology, vegetation, soil) approach to wetland delineation, along with their indicators and tests; wetland classification systems; wetland functions; restoration and monitoring; and wetland regulatory programs in MN with an emphasis on the basic administration of the Wetland Conservation Act including Local Government Unit duties, Technical Evaluation Panel procedures, decision types, application procedures, wetland banking, and enforcement procedures.

3

MWPC CORE CURRICULUM

- 1) **Wetland Conservation Act (WCA)-** MN Rule Chapter 8420 and underlying Statutes, Agency Guidance
- 2) **Purpose-** No net loss; increase quantity, quality & biological diversity; avoid, minimize, replace
- 3) **Scope:** What WCA Regulates & does NOT regulate
- 4) **Other Related Programs:** Section 404 of the Clean Water Act, MN Public Waters Program, NCCS Swamplander
- 5) **Local Government Unit (LGU):** Determining the LGU & LGU Duties
- 6) **Technical Evaluation Panel (TEP):** TEP members, procedures, meetings, recommendations, and findings of fact.
- 7) **Critical Definitions:** Important WCA and delineation manual definitions
- 8) **Wetland Classification Systems:** Circular 39, Cowardin, Eggers & Reed,
- 9) **Wetland Ecology & Functional Assessment:** Understanding wetland functions and processes
- 10) **Wetland Delineation:** USACE 1987 Manual and Regional Supplements & guidance documents
 - a) **Negotiation:** Plant ID, plant communities, definition of a hydrophyte, National Wetland Plant List, plant indicator status, determining hydrophytic vegetation, soil survey, soil texture, soil depth, soil infiltration, soil saturation
 - b) **Soil:** Definition of hydric soil, key physical properties, textural divisions, Web Soil Survey, soil infiltration, soil saturation, soil depth, soil texture
 - c) **Hydrology:** Hydrology Technical Standard, hydrology indicators, antecedent precipitation, offsite aerial imagery review

4

Basic Agenda

Monday	Thursday
• 3 Parameters, Wetland Function, Delineation Methods, Classification Systems, Critical Definitions, Hydrology Indicators, Data Sheet Field Exercise	• Quiz 3, WCA Basic Decision Types, Replacement Plans, Wetland Banks, Altered Hydrology and Wetland Restoration, Monitoring and Functional Assessments, Small Group delineation Field Exercise
Tuesday	• Quiz 1, Offsite Resources and Hydrology Methods, Soil Concepts, Hydric Soil Indicators, Web Soil Survey, Antecedent Precipitation, Soil Texture Lab, Soil profile description field exercise
Wednesday	• Quiz 2, Intro to Regulatory Programs, LGU Duties, Technical Evaluation Panel, WCA Application Procedures, Wetland Vegetation, Vegetation Field Plots Exercise
Friday	• WCA Enforcement, Submitting Delineations, Course Summary & Quiz
	• MWPCP Professional Exams

5

Resources

Wetland Training Opportunities

2022 MWPCP Training Courses

Please follow this link to register for the classes:
<http://bwsr.state.mn.us/wetland-training-opportunities/>

Minnesota Wetland Professional Certification Program

Wetland Training Opportunities -

Wetland Data Field

Online Wetland Training

Virtual Training: <http://bwsr.state.mn.us/wetland-training-opportunities/> - February 09-10 (complete)

Key Test (PA, A, B) - 8 hours each - 02/09-10/2022

Minnesota Wetland Professional Certification Program - February 09-10 (complete)

Basic Wetland Delineation and Regulation Class: <http://bwsr.state.mn.us/wetland-training-opportunities/> - February 12-13 (complete)

• <https://bwsr.state.mn.us/wetland-training-opportunities>

6

MWPCP Class Portal

7

Pop Quiz

According to the 2019 Minnesota update of the National Wetland Inventory, how many acres of wetlands are in MN?

A) 6.3 million acres

B) 10.5 million acres

C) 12.2 million acres

D) 24.4 million acres

A scenic view of a wetland area. In the foreground, there is a body of water with ripples. Beyond the water, there is a field of tall, yellowish-green grasses. In the background, there is a line of evergreen trees. The sky is blue with some white clouds.

8

9

Three Parameters of a Wetland

mn BOARD OF WATER AND SOIL RESOURCES

10

What is a Wetland?

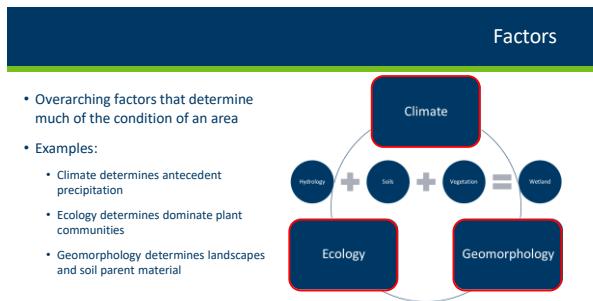
Definition: Those areas inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted to life in saturated soil conditions.

Hydrology + Vegetation + Soil = Wetland

11

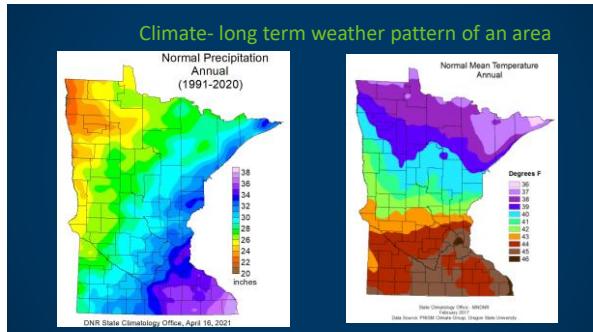
3 Parameters of a Wetland

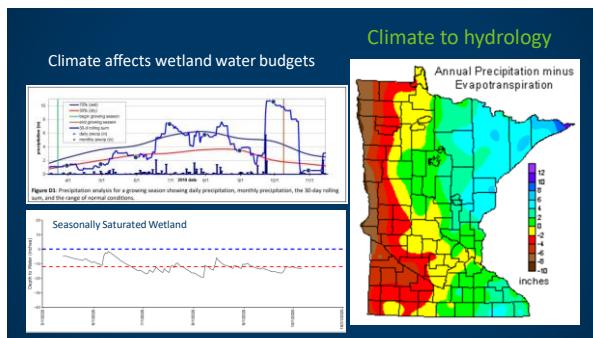
- 3 Parameters of a wetland
- Hydrology- frequency and duration of movement of water through a landscape
- Soil- organic and mineral surfaces which often exhibit characteristics that it has been in saturated conditions
- Vegetation- plant community and prevalence of species that have made adaptations to live in saturated conditions



12

13





14

15

Eastern Broadleaf Forest Province

- Large province- Almost 12 million acres across MN, IA, WI, OH, NY, IL, IN, KT, MS, AR
- Transition between semi-arid prairie and semi-humid mixed forest of SE/NE
 - Prairie species meet eastern ranges
 - Forest species meet western ranges
- Landforms largely glacial deposits and recent erosion
- Precipitation approximately equals evapotranspiration
- Avg Precipitation 24-35 inches
- Avg temperatures 38-46 F

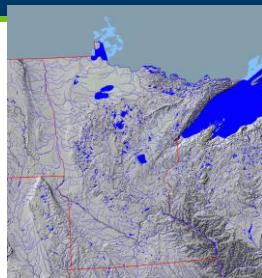
16

Prairie Parkland Province

- In MN covers over 16 million acres
- Historically tallgrass prairie
- Evapotranspiration greater than precipitation
- Heavily glaciated including multiple advances during Wisconsin glaciation
- Des Moines lobe fronted by largest pro-glacial lake in North America- Glacial Lake Agassiz
- Glacial river Warren outlet south end of Agassiz and eroded much of current MN River valley

17

Laurentian Mixed Forest Province


- Covers MN, WI, MI, southern Ontario and parts of New England
- In MN covers 23 million acres
- Mixed conifer and hardwood forests
- Varies from thin glacial deposits over bedrock, deep glacial till, thick peatlands
- Precipitation increases SW-NE
- Temperature decreases SW-NE
- Vegetation changes accordingly

18

Geomorphology

Study of physical features on the surface of the earth and their relation to its geologic structures.

19

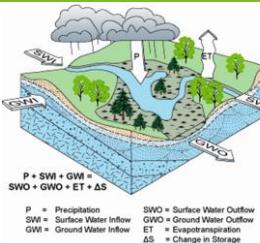
Watersheds and Ecologic Sections

Glacial landforms define MN topography

Major Watersheds align with:

Ecologic provinces

Along with climate



20

Hydrology

- Inputs
 - Precipitation
 - Surface water inflow
 - Groundwater inflow
- Outputs
 - Surface water outflow
 - Groundwater outflow
 - Evapotranspiration

21

Wetland Hydrology

1987 Corps Manual: *"The sum total of wetness characteristics in areas that are inundated or have saturated soils for a sufficient duration to support hydrophytic vegetation."*

Regional Supplements: "Wetland hydrology indicators are used in combination with hydric soil and hydrophytic vegetation to determine whether an area is wetland under the Corps manual."

22

Hydrology Technical Standard

...“inundated or saturated by surface or ground water at a frequency and duration”

Technical standard if hydrology indicators not observed:

- 14 or more consecutive days of flooding or ponding;
- Water table 12 in. or less below soil surface;

23

Hydrology Indicators

Evidence that there is continuing hydrology and confirms that an episode of inundations/saturation occurred recently.

Wetland hydrology indicators are divided into two categories:

- Primary** – provide stand-alone evidence of a current or recent hydrologic event; and
- Secondary** – provide evidence of recent hydrology when supported by one or more other hydrology indicators

24

Soil

"...sufficient to support, and that under normal circumstances do support, a prevalence of **vegetation** typically adapted to life in **saturated soil conditions**"

25

Hydric Soil

- A hydric soil is a soil that formed under conditions of saturation, flooding, or ponding **long enough** during the **growing season** to develop anaerobic conditions in the **upper part**.

26

Hydric Soil Indicators

Based on key physical properties: color & texture

And the depth & thickness where they are found

27

Vegetation

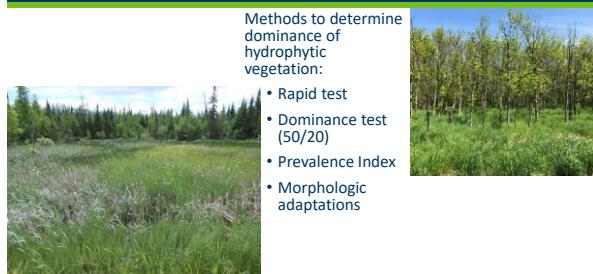
"...sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted to life in saturated soil conditions"

Wetland Indicator Status	Definition
Obligate Wetland (OBL)	Almost always occur in wetlands
Faculative Wetland (FACW)	Usually occur in wetlands, but may occur in non-wetlands
Faculative (FAC)	Occur in wetlands and non-wetlands
Faculative Upland (FACU)	Usually occur in non-wetlands, but may occur in wetlands
Obligate Upland (UPL)	Almost never occur in wetlands

https://wetland-plants.sec.usace.army.mil/nwpl_static/v34/home/home.html

28

Hydrophytes


Adaptations to saturated environment:

- morphological (multiple trunks, floating leaves)
- physiological (metabolic pathways)
- reproductive (floating seedlings)

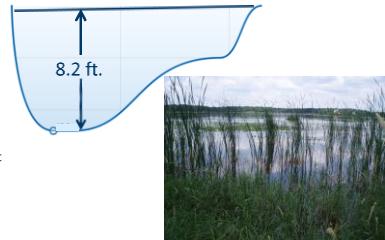
29

Dominance Tests

30

Rapid Test Example

Hydrophytic Vegetation?


31

Limits of wetland (depth)- Deepwater Habitat

Important Considerations for Wetlands

- Must be capable of supporting rooted, emergent vegetation.
- Must have soil.

If the water is too deep or fast flowing, cannot support rooted vegetation and soil cannot form (unconsolidated bottom).

32

Quiz

- What are the three parameters that define a wetland?

Hydrology + Vegetation + Soil = Wetland

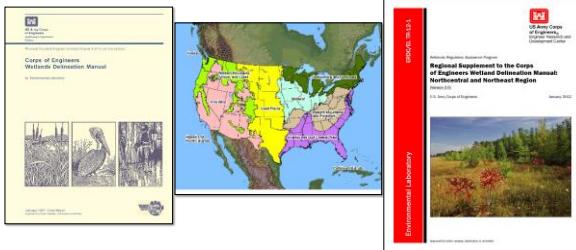
33

Basic Overview of Wetland Delineation

34

3-Parameter/ Indicator Approach

1. **Soils** –Longest term evidence, Historic conditions, may not reflect current condition.
2. **Hydrology** –Current condition, shortest term evidence but heavily influenced by recent climate conditions
3. **Vegetation** –Somewhere between



The 87 Manual requires 3 parameters because no one source typically gives the answer in all situations

35

87 Manual and Regional Supplements

36

Wetland Delineation Types

Routine – Qualitative Data

- Indicator based (veg, soil, hydro)
- Representative sample points
- Estimate and interpret data
- 3-Types of delineations

Comprehensive – Quantitative Data

- Systematic sampling
- Precise measurements

37

Wetland Delineation Types

ROUTINE

Level 1 - Onsite Inspection Unnecessary

Level 2 - Onsite Inspection Necessary

Level 3 - Combination of Levels 1 and 2

38

Wetland Delineation Types

Routine Level 1

Use when exact wetland boundary

not necessary

Proposed
Shed

39

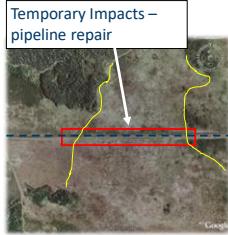
Routine Level 1

40

Routine Level 1

41

Routine Level 1



42

Routine Level 1 Examples

43

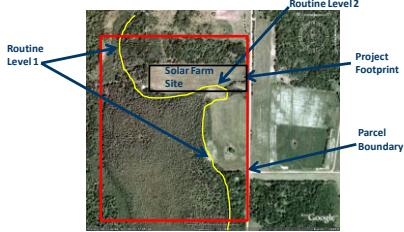
Wetland Delineation Types

Routine Level 2

- Use when an accurate boundary is critical
- Need a formal boundary approval
- Most used and focus of class

44

Routine 2



45

Routine Level 3

Combination of Levels 1 and 2

46

Routine Level 3

47

Wetland Delineation Types

Comprehensive Delineation Method

- Complex, requiring rigorous documentation and coordination
- Quantitative Measurements of:
 - Hydrology
 - Vegetation
 - Soils
- Combine with other methods

48

Comprehensive Delineation

49

Guidance

Delineation Method	Review of offsite mapping resources	Site Visit	Sampling Approach	Complete Field Data Forms	Field Staking of Wetland Boundaries
Routine Level 1	Yes	Sometimes	Offsite	No	No
Routine Level 2	Yes	Yes	Onsite, qualitative	Yes	Yes
Comprehensive	Yes	Yes	Onsite, quantitative	Yes	Yes

WCA Application Type Examples	Commonly Used Delineation Method
Temporary impact under No-Loss	Routine Level 1
Banking application: pre-application scoping	Routine Level 1
Banking application: full application	Routine Level 2
Road Program Wetland Impact Documentation—Road project through a large continuous wetland	Routine Level 1
Road Program Wetland Impact Documentation—Scattered wetlands within construction corridor	Routine Level 2
Replacement plan	Routine Level 2
Enforcement actions	Routine Level 2 or Comprehensive
Wetland boundary approval (no project application)	Routine Level 2
Agricultural exemption determination (8420.04.20, Subpart 2A)	Routine Level 1

50

Routine Level 2 Process

1. Research data sources
 - Know site before visit
 - Saves time and effort
2. Field visit and data collection
 - Data collection
 - Preponderance of evidence
3. Delineate wetland boundary
 - Document indicators of wetland/non-wetland decision
 - Only after multiple informal observations

51

Offsite Resources = Data Sources

- Aerial Photos (current and historic)
- Soil map (Web Soil Survey)
- Topographic\LiDAR
- NWI Map (updated)
- DNR Public Waters Map

52

Routine Level 2 Process

- **Field Visit and Data Collection**
- Use preliminary map to make a plan
- Recon site and make informal observations and samples
- Make notes about general characteristics
 - Plant Communities
 - Topographic changes-Landscape position
 - Changes in soils
 - Precipitation conditions (wet, normal or dry)
 - Data collection/data sheets
- Delineate Wetland Boundary

53

Field Equipment

54

Sample Points

1. Top section of data sheet

- Documents sample location and landscape setting
- Site conditions Wet-Dry

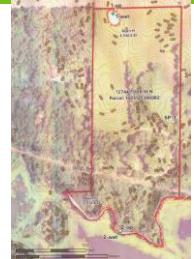
2. Vegetation

- ID species to determine if plant community is hydrophytic
- Record comments on changes in vegetation

3. Soil

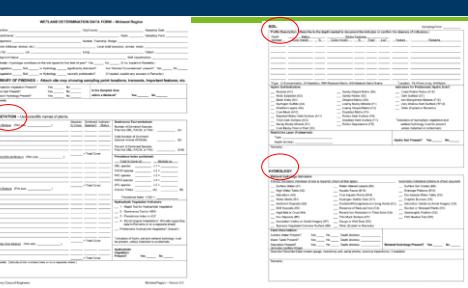
- Describe soil and determine if it is hydric
- Record comments on changes in soil

55


Sample Points

4. Topography

- Record changes in topography
- Abrupt
- Gradual
- Geomorphic position


5. Other notable remarks and observations

- Basis for delineation line (sharp topo/veg break)
- Hydrology inputs and outputs

56

It's all about the documentation!

57

It's all about the documentation!

58

Sampling Location Should Be Representative

- Representative of soil changes (from upland to wetland)
- Representative of vegetation changes
- Representative of hydrology indicator changes
- Representative of landscape changes

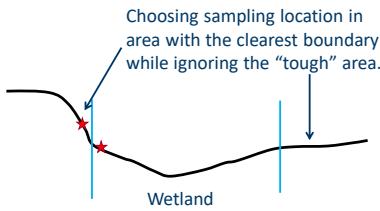
59

Routine Level 2 Sampling Transects

60

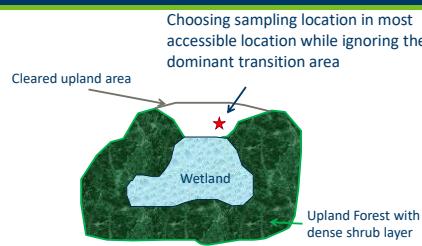
Sample location is important!

Good data collection cannot compensate for poor sampling location choices.



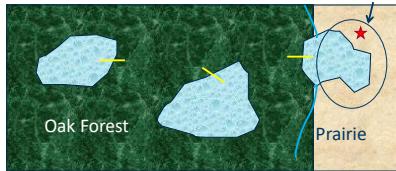
61

Common Errors – The “safe” approach



62

Common Errors – The “lazy” approach

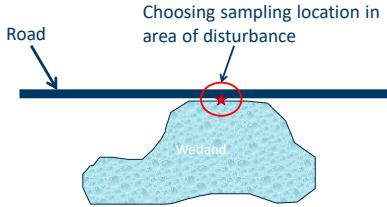


63

Common Errors – The “anti-community” approach

Failing to sample in all transitional areas

What about this transition?



64

Common Errors – The “disturbed” approach

65

Make a Plan:

- Examining your offsite mapping before heading to the field.
- Do an initial site reconnaissance before settling on a sampling location.
- In tough areas, do “preliminary” sampling to help determine where you should do your “official” representative sampling (i.e. full data sheets).

66

Guidance

BWSR Wetland Delineation page

Wetland Delineation

The screenshot shows the BWSR Wetland Delineation page. The top navigation bar includes links for Home, About, Wetlands, Assessment, Technical Resources, Master Planning, Operational Resources, and Search. The main content area is titled "Wetland Delineation" and features a photograph of a wetland area with tall grass and water. To the left of the photograph is a sidebar with links for "Wetland Delineation", "Wetland Inventory", "Wetland Assessment", "Assessing Your Wetlands", "Locating a Delineation Expert", "Wetland Function Assessment", and "Wetland Inventory".

67

Level One Delineation Exercise

The screenshot shows the Level One Delineation Exercise. It features a satellite map on the left and a topographic map on the right. The topographic map shows contour lines and a network of roads. The exercise likely involves using these maps to identify wetland areas for delineation.

68

Level One Delineation Exercise

The screenshot shows the Level One Delineation Exercise. It features a satellite map on the left and a topographic map on the right. Red arrows are overlaid on the topographic map, pointing to specific features or areas of interest for wetland delineation. The satellite map shows agricultural fields and water bodies.

69

Wetland Classification Systems

mn BOARD OF WATER AND SOIL RESOURCES

70

Wetland Classification Systems in MN

- Circular 39
- Cowardin et al.
- Eggers & Reed
- Hydrogeomorphic Method

71

Wetland Classification Systems

72

HGM Class	Circular 39	Eggers & Reed	Cowardin Vegetation Class	Typical Water Regimes
Depression	1	Seasonally Flooded Bottom	PEM- Emergent	Seasonally Flooded
Riverine	1	Floodplain Forests	PFO-Forested	Temporary Flooded
Depression	2	Seige Meadows	PEM- Emergent	Saturated
Sloped				
Organic Flat				
Riverine	2	Fresh (wet) Meadows	PEM- Emergent	Saturated
Mineral Flat				
Depression	2	Wet to Wet-Mesic Prairie	PEM- Emergent	Saturated
Sloped	2	Catkinous Fens	PEM- Emergent	Saturated
Depression	3	Shallow Marsh	PEM- Emergent	Semi permanently Flooded (up to 6")
Lacustrine Fringe				
Depression	4	Deep Marsh	PEM- Emergent PAB-aquatic bed	Semi permanently to permanently flooded
Lacustrine Fringe				
Depression	5	Shallow, Open Water	PEM- Emergent PAB-Unconsolidated Bottom	Permanently Flooded (up to 8.2")
Lacustrine Fringe				
Mineral Flat	6	Shrub-Carr	PSS- Scrub-shrub	All regimes except permanently flooded (saturated most of growing season)
Sloped				
Mineral Flat	6	Alder Thicket	PSS- Scrub-shrub	All regimes except permanently flooded (saturated most of growing season)
Sloped				
Mineral Flat	7	Hardwood Swamp	PFO-Forested	All regimes except permanently flooded (saturated most of growing season)
Sloped				
Mineral Flat	7	Coniferous Swamp	PFO-Forested	All regimes except permanently flooded (saturated most of growing season)
Sloped				
Organic Flat	8	Open Bog	PMI- Moss-lichen	Saturated
Organic Flat	8	Coniferous Bog	PFO-Forested	Saturated

73

Why Classify Wetlands?

- To establish a consistent organizational structure for:

- Understanding functions
- Inventory/mapping
- Scientific study and tracking
- Regulation

Most systems use

- Vegetation (emergent or forested?)
- Hydrology (standing water or saturation?)
- Water depth (6 inches or 3 feet?)

Some use

- hydrologic source (surface or groundwater fed)
- geomorphic position (position on the landscape).

74

Wetland Functions & Values

Wetland Functions: in scientific assessments means natural processes

Wetland Value: wetland goods and services providing monetary or social welfare benefit.



75

Wetland Functions

- Act as a natural “filter” to maintain water quality
- Facilitates infiltration recharging groundwater
- Stabilize base flow
- Decreases fluid velocity during high flow events which decreases turbidity
- Storm water retention (i.e. storage)
- Provides habitat
- Shoreline protection

76

Values

More than a billion people make a living from wetlands across the world.

- Fishing
- Eco-tourism
- Farming
- Drinking water

Source: www.worldwildlife.org
Photos: www.ramsar.org

77

Values

Hunting, Fishing, Bird watching, photography

www.nps.org

Mod Duck Boats

78

Values

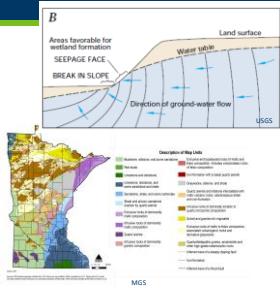
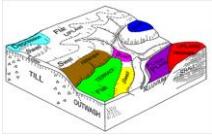
79

Values

Food Production

80

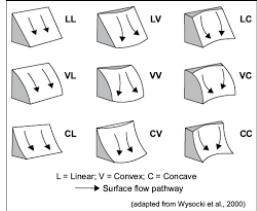
Hydrogeomorphic Method



Established classes based on geomorphic, hydrology and hydraulic functions of palustrine wetlands

Classification Name	Definition
Lacustrine	Wetland occurs within a topographic depression that has a closed elevation contour that allows the accumulation of surface water and is restricted to the margin of a depressional lake basin.
Riverine	Wetland occurs on a nearly level landscape and lack along and is influenced by flooding from a stream, river or flow-through ditch.
Slope	Wetland occurs on a slope (generally >2%) with groundwater discharge as its primary source of hydrology.
Mineral Flat	Wetland occurs on a nearly level landscape, is not significantly influenced by flooding from a stream, river or flow-through ditch and has predominantly mineral soils.
Organic Flat	Wetland occurs on a nearly level landscape, is more significantly influenced by flooding from a stream, river or flow-through ditch and has predominantly organic soils.
Depression	Wetland occurs within a topographic depression that has a closed elevation contour that allows the accumulation of surface water and is not associated with the margin of a depressional lake basin.

81

Parameters of HGM


- Geomorphology- landscape position
- Hydrology- water source and output
- Hydraulics- hydrodynamics

82

Landscape Position- surface shape

- Convex- surface curves outward
- Concave- surface curves inward
- Linear- flat, one-dimensional surface

83

Landscape Position- slope processes

The diagram illustrates a cross-section of a hillside with different slope positions and processes:

- Landscape position:**
 - Summit
 - Shoulder
 - Backslope
 - Foot slope
 - Toe slope
- Slope processes:**
 - Erosional- summit, shoulder, backslope
 - Depositional- foot slope, toe slope

The diagram shows a hillside with a grey shaded area representing the hillside itself. Various processes are labeled along the slope:

- Summit:** Erosion.
- Shoulder:** Erosion.
- Backslope:** Erosion.
- Foot slope:** Deposition.
- Toe slope:** Deposition.

Below the hillside, a series of dashed lines indicate different landforms or processes:

- Open Water (Oceans, Lakes)
- Shoreline (Shoreline, Beaches)
- Shallow Shelves (Shallow Shelves, Continental Shelves)
- Mid大陆 (Mid-Continent, Interior Plains)
- Steppes (Steppes, Prairies)
- Mountain Belts (Mountain Belts, Cordilleras)
- Deserts (Deserts, Deserts)
- Forested Piedmont (Forested Piedmont, Forested Piedmont)
- Global Buffet (Global Buffet, Global Buffet)

84

Hydrology

$P + SWI + GWI = SWO + GWO + ET + \Delta S$

P = Precipitation
 SWI = Surface Water Inflow
 GWI = Ground Water Inflow
 SWO = Surface Water Outflow
 GWO = Ground Water Outflow
 ET = Evapotranspiration
 ΔS = Change in Storage

85

Hydraulics- how water moves

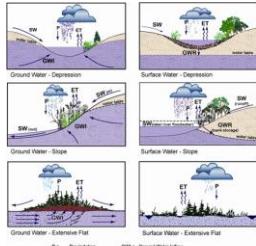
- Uni-directional
- Bi-directional
- Bi-directional
 - Estuarine and lacustrine fringe

86

HGM Classes

- RIVERINE
- DEPRESSATIONAL
- SLOPE
- MINERAL SOIL FLATS
- ORGANIC SOIL FLATS
- LACUSTRINE FRINGE*
- ESTUARINE FRINGE*

87



HGM Subclasses

- Influenced by:
 - Groundwater input
 - Surface water input
 - Hydrology Outputs
 - Surface
 - Ground

88

Depressional- surface

The diagram shows a cross-section of a concave landscape with a water table. It illustrates the flow of surface water (SW) into a depression, where it is influenced by precipitation (P) and evapotranspiration (ET). The water table is labeled "water table" and "GWR↑".

The image shows an aerial view of a wetland area with numerous small, shallow depressions filled with water, surrounded by green vegetation.

- Landscape position- concave, foot slope/toe slope, closed contours
- Hydraulics- unidirectional
- Water source- surface flow and precipitation, seasonal
- Outputs- Evapotranspiration, groundwater recharge

89

Depressional- groundwater

The diagram shows a cross-section of a concave landscape with a water table. It illustrates the flow of groundwater (GW) into a depression, influenced by precipitation (P) and evapotranspiration (ET). The water table is labeled "water table" and "GWR↑".

The image shows a wetland area with tall, thin trees (cattails) growing in a pond, surrounded by green vegetation.

- Landscape position- concave, foot and toe slopes, closed contours
- Hydraulics- unidirectional
- Water source- groundwater and precipitation, seasonal
- Outputs- Evapotranspiration, groundwater recharge, intermittent overland flow

90

Functions

Groundwater Recharge

91

Mineral Soil Flats

Surface Water - Extensive Flat

- Landscape position- relic lake bottoms and floodplains, intergrades to multiple other classes (sloped, riverine, lacustrine)
- Hydraulics- vertical groundwater fluctuations
- Water source- precipitation, no groundwater interaction
- Outputs- evapotranspiration, saturated "seepage" flow

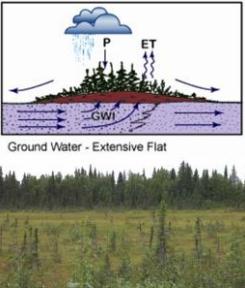
92

Functions

Habitat

- Many insects, reptiles and amphibians rely on wetlands to complete their life cycle.
- Some mammals are semi-aquatic: beavers, muskrat, mink, otters.
- Many birds feed and nest in wetlands.
- Fish rely on wetlands for breeding, feeding and shelter.

93



Organic Soil Flats

- Landscape position- summit (interfluves- broad “plateau” between drainage systems, depressions filled with organics, vertical accretion of organics
- Hydraulics- precipitation, unidirectional groundwater
- Water source- precipitation, groundwater
- Outputs- saturated overland seepage, evapotranspiration

94

Functions

Carbon Storage

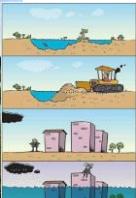
Although wetlands only account for 5-8% of earths terrestrial landscape they may provide carbon sinks of about 300 to 700 billion tons of carbon. Peatland wetlands make up the majority of carbon sinks.

95

Riverine

- Landscape position- floodplains and riparian corridors, often intergrade to sloped or depressional
- Hydraulics- unidirectional, surface overbank flow, groundwater, interflow (both surface and ground) from adjacent uplands
- Water source- precipitation, groundwater
- Outputs- overland surface flow (perennial flow not required), evapotranspiration

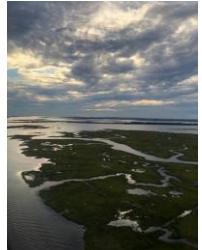
96



Functions

Floodwater Retention

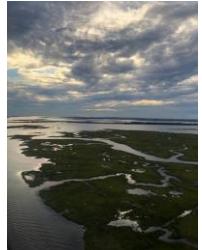
97



Lacustrine Fringe

- Landscape position- adjacent to lakes, toe slope, often intergrade to sloped
- Hydraulics- bidirectional (inflow from adjacent uplands and lake)
- Water source- precipitation, groundwater
- Outputs- return flow to lake, saturated surface seepage, evapotranspiration

98



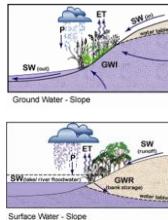
Estuarine Fringe

- Landscape position- along coasts and estuaries, often intergrade to riverine
- Hydraulics- bidirectional (tidal flow)
- Water source- surface via frequent tidal flooding, precipitation
- Outputs- tidal exchange, saturated overland flow, evapotranspiration

99

Functions

Water Quality



100

Sloped

- Landscape position- linear or convex, predominately found at foot and toe slope, can be found on back slope and shoulder slope, often intergrades to other classes (mineral flat, riverine, depression)
- Hydraulics- unidirectional
- Water source- groundwater, surface runoff, precipitation
- Outputs-

101

Functions

Sediment Trap

102

HGM Class (subclass)	Hydrology Inputs	Hydrology Outputs	Hydraulics
RIVERINE	surface flow precipitation groundwater	surface flow evapotranspiration	bidirectional (both surface and ground)
DEPRESSONAL- surface	surface flow precipitation	groundwater recharge evapotranspiration	unidirectional
DEPRESSONAL- ground	groundwater precipitation	intermittent surface flow evapotranspiration groundwater recharge	unidirectional
SLOPED- surface	surface flow precipitation	surface flow evapotranspiration groundwater recharge	unidirectional
SLOPED- ground	groundwater surface water precipitation	surface flow evapotranspiration	unidirectional
MINERAL SOIL FLATS	precipitation intermittent surface flow	evapotranspiration intermittent surface flow	unidirectional
ORGANIC SOIL FLATS	groundwater precipitation	intermittent surface flow Evapotranspiration	unidirectional
ESTUARINE FRINGE	surface flow tidal exchange precipitation	tidal exchange surface flow Evapotranspiration	bidirectional
LACUSTRINE FRINGE	surface flow groundwater precipitation	return flow to lake surface flow evapotranspiration	bidirectional

103

Disjunctive HGM Classification System Key

1. Wetland does not occur on a nearly level landform 2

1. Wetland occurs on a nearly level landform 3

3. Wetland lies along and its hydrology is significantly influenced by flooding from a stream/river channel or a flow-through ditch **Riverine**

3. Wetland does not lie along and/or is not significantly influenced by a stream/river channel or a flow-through ditch 4

4. Wetland has predominately organic soils **Organic Flat**

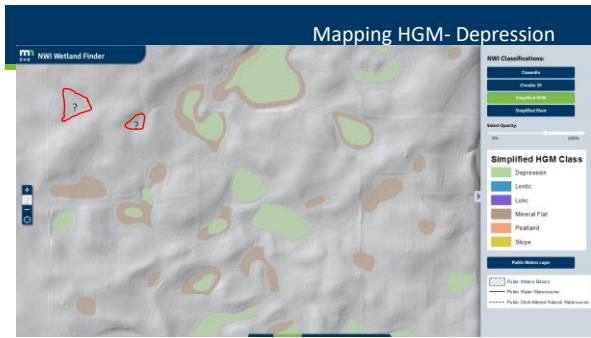
4. Wetland has predominately mineral soils **Mineral Flat**

2. Wetland occurs on a slope (generally >2%) with groundwater discharge as its primary source of hydrology **Slope**

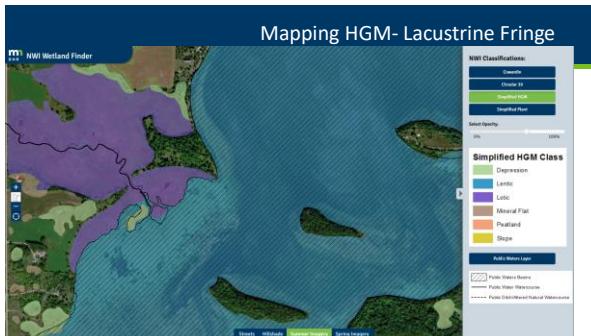
2. Wetland occurs within a topographic depression that has a closed elevation contour that allows the accumulation of surface water 5

5. Wetland is not restricted to the margin of a depressional lake basin **Depression**

5. Wetland is restricted to the margin of a depressional lake basin **Lacustrine**


[HGM Classification System for Minnesota](#)

HGM


104

105

106

107

108

Developed in 1956 for wildlife habitat (waterfowl)

Previously used in Minnesota Wetland Conservation Act

Based on hydrology and vegetation and also applies landscape position

Circular 39

109

Eggers & Reed Classification System

Primarily based on plant communities, but includes "typical" associated hydrologic regimes

Shallow, Open Water
Deep Marsh
Shallow Marsh
Sedge Meadow
Fresh (Wet) Meadow
Wet/Wet-Mesic Prairie
Calcareous Fen
Open Bog/Coniferous Bog
Shrub-Carr/Alder Thicket
Hardwood Swamp/Coniferous Swamp
Floodplain Forest
Seasonally Flooded Basin

110

Circular 39

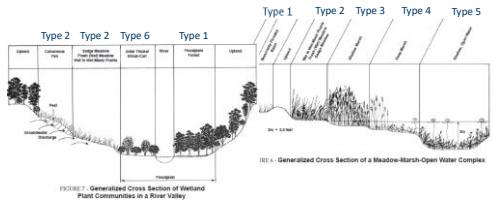
Eggers & Reed

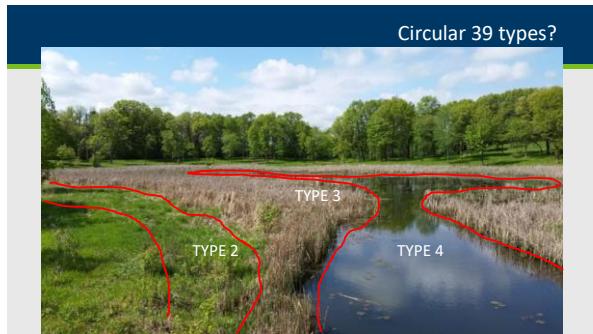
1	Seasonally Flooded Basins
1	Floodplain Forests
2	Sedge Meadows
2	Fresh (wet) Meadows
2	Wet to Wet-Mesic Prairies
3	Calcareous Fens
3	Shallow Marsh
4	Deep Marsh
5	Shallow, Open Water
6	Shrub-Carr
6	Alder Thicket
7	Hardwood Swamp
7	Coniferous Swamp
8	Open Bog
8	Coniferous Bog

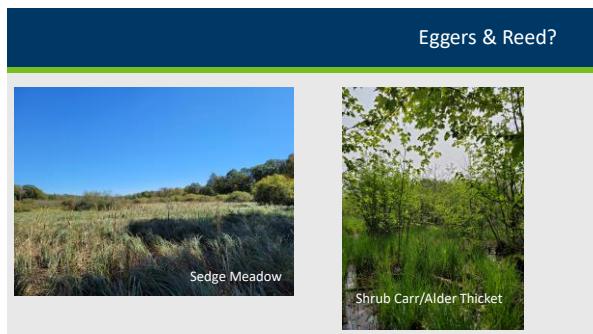
Wetland Types

111

Eggers & Reed & WCA



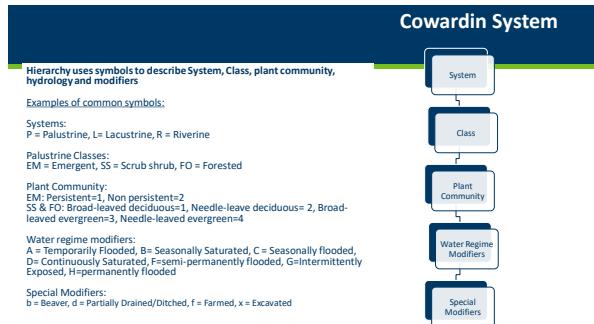




112

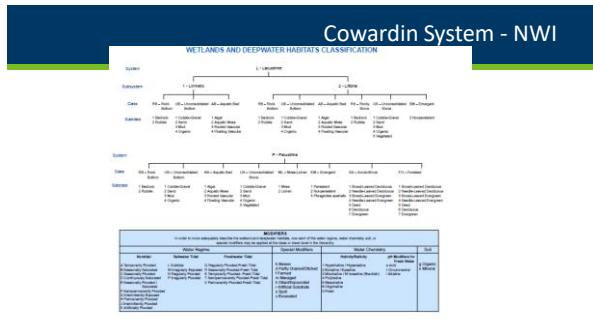
113

114

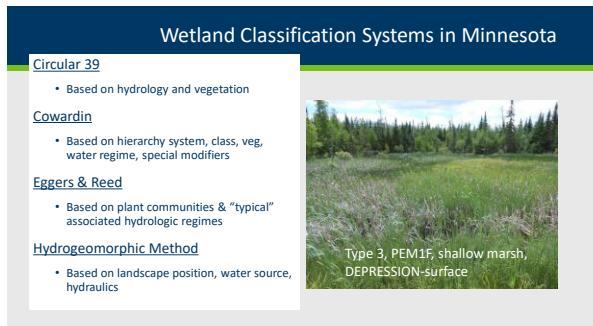


115

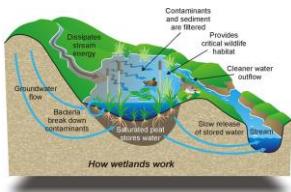
116






117

118


119

120

Wetland Functions and Values

- Functions- natural processes
 - Water quality, flood retention, habitat, groundwater recharge, carbon storage
- Values- provide monetary or social welfare benefit
 - Wild rice, recreation, education, aesthetics, fishing

121

Hydrology Indicators

122

Wetland Hydrology

1987 Corps Manual: "*The sum total of wetness characteristics in areas that are inundated or have saturated soils for a sufficient duration to support hydrophytic vegetation.*"

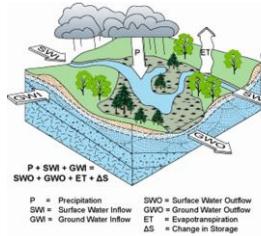
Regional Supplements: "*Wetland hydrology indicators are used in combination with hydric soil and hydrophytic vegetation to determine whether an area is wetland under the Corps manual.*"

123

Hydrology Technical Standard

... “inundated or saturated by surface or ground water at a frequency and duration”

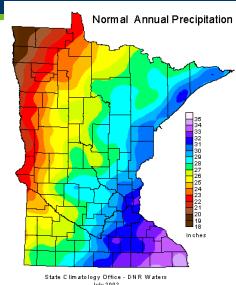
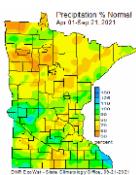
Technical standard if hydrology indicators not observed:


- 14 or more consecutive days of flooding or ponding;
- Water table 12 in. or less below soil surface;

124

Hydrology

Wetlands gain and lose water constantly through a variety of pathways.

- Inputs
 - Precipitation
 - Surface water inflow
 - Groundwater inflow
- Outputs
 - Surface water outflow
 - Groundwater outflow
 - Evapotranspiration

125

Precipitation

- Average Annual precipitation varies significantly from one side of the state to the other
- A difference of 14 inches from Houston to Kittson

126

Hydrology Indicators

Evidence that there is continuing hydrology and confirms that an episode of inundation/saturation occurred recently.

Wetland hydrology indicators are divided into two categories:

Primary – provide stand-alone evidence of a current or recent hydrologic event; and

Secondary – provide evidence of recent hydrology when supported by one or more other hydrology indicators.

127

Hydrology Indicator Groups

Group A – direct observation of water

Group B – evidence of flooding/ponding

Group C – evidence of current or recent saturation.

Group D – Landscape and veg. characteristics that indicate contemporary wetland conditions.

128

Land Resource Regions

Regions dictate which indicators are used and how they are used

129

Flipbook

BOARD OF WATER AND SOIL RESOURCES
Pocket Guide to Field Indicators of Hydric Soils and Wetland Hydrology in Minnesota
 2025 (Version 2)

B15. Marl Deposits: Presence of marl (calcium carbonate precipitated from standing or flowing water through the action of algae or diatoms) as a tan or whitish deposit on the soil surface.
Primary Indicator

North Central/North East Supplement (LRR K) only

B16. Moss Trim Lines: The presence (on trees or other upright objects) of an abrupt trim line below which water-intolerant mosses have been killed by prolonged inundation in a seasonally inundated area.
Secondary Indicator: Does not include lichen trim lines or trim lines caused by ice scour or abrasion, indicated by bark or tissue damage.
 North Central/North East Supplement (LRR K) only

130

Group A Indicators

Direct observation of water

131

A1: Surface water

Category: Primary

Direct, visual observation of surface water during a site visit.

Field Observations:

Surface Water Present?	Yes <input type="checkbox"/>	No <input type="checkbox"/>	Depth (inches): _____
Water Table Present?	Yes <input type="checkbox"/>	No <input type="checkbox"/>	Depth (inches): _____
Saturation Present? (includes capillary fringe)	Yes <input type="checkbox"/>	No <input type="checkbox"/>	Depth (inches): _____

132

A2: High water table

Category: Primary

Water table 12 in. (30 cm) or less below the surface in a soil pit, auger hole, or shallow monitoring well.

Water table at 5"

below surface*

Field Observations:	
Surface Water Present?	Yes _____ No _____ Depth (inches):
Water Table Present?	Yes _____ No _____ Depth (inches):
Saturation Present? (includes capillary fringe)	Yes _____ No _____ Depth (inches):

133

A3: Saturation

Category: Primary

Visual observation of saturated soil conditions 12 in. or less from the soil surface as indicated by water **glistening** on the surfaces and broken interior faces of soil samples.

- Glistening observed at 8" in a loamy clay soil
- Water table at 12"

*Must include water table observation.

134

Group B Indicators**Evidence of ponding or flooding – past or present**

135

B1: Water Marks**Category:** Primary

Water marks are discolorations or stains on the bark of woody vegetation, rocks, bridge supports, buildings, fences, or other fixed objects as a result of inundation.

136

B2: Sediment Deposits**Category:** Primary

Sediment deposits are thin layers or coatings of fine-grained mineral material or organic matter remaining on tree bark, plant stems or leaves, rocks, and other objects after surface water recedes

137

B3: Drift Deposits**Category:** Primary

Drift deposits consist of rafted debris that has been deposited on the ground surface or entangled in vegetation or other fixed objects.

138

B4: Algal mat or crust

Category: Primary

This indicator consists of a mat or dried crust of algae, perhaps mixed with other detritus, left on or near the soil surface after dewatering.

139

B5: Iron deposits

Category: Primary

General Description: This indicator consists of a thin orange or yellow crust or gel of oxidized iron on the soil surface or on objects near the surface.

140

B6: Surface soil cracks

Category: Secondary

Water destroys the soil structure which facilitates the cracking. Surface soil cracks consist of shallow cracks that form when fine-grained mineral or organic sediments dry and shrink

141

B7: Inundation on aerial imagery

Category: Primary

One or more* recent aerial photographs or satellite images that show the site to be inundated during the growing season.

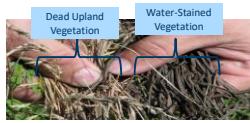
* Use Off-site Guidance Methods.

142

B8: Sparsely vegetated concave surface

Category: Primary. (Secondary in LRR F)

On concave land surfaces, the ground surface is either unvegetated or sparsely vegetated due to long-duration ponding during the growing season.



143

B9: Water-stained leaves

Category: Primary

Water-stained leaves are fallen or recumbent dead leaves that have turned grayish or blackish in color due to inundation for long periods.

144

B10: Drainage patterns**Category: Secondary**

Flow patterns visible on the soil surface or eroded into the soil, low vegetation bent over in the direction of flow, absence of leaf litter or small woody debris due to flowing water

145

B15: Marl deposits**Category: Primary**

Presence of marl on the soil surface.

Found mainly in calcareous fens, seeps, or white cedar swamps in areas underlain by limestone bedrock.

146

B16: Moss Trim Lines**Category: Secondary**

Moss trim lines on trees or other upright objects in seasonally inundated areas.

Formed when water-intolerant mosses growing on tree trunks and other upright objects are killed by prolonged inundation.

147

Group C Indicators

Evidence of soil saturation – past or present



148

C1: Hydrogen sulfide odor

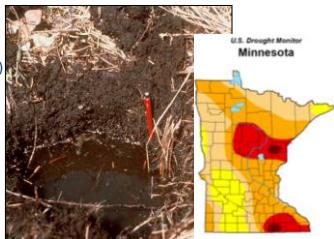
Category: Primary

A hydrogen sulfide (rotten egg) odor within 12 in. of the soil surface.

149

C2: Dry season water table

Category: Secondary


Visual observation of the water table between 12 and 24 in. (30 and 60 cm) below the surface during the normal dry season or during a drier-than-normal year.

Dry Season Dates per Region:

Great Plains (F): July 1

Midwest (M): July 15

NC/NE (K): August 1

150

C3: Oxidized rhizospheres along living roots

Category: Primary.

Secondary indicator in LRR F (GP) where soils are in tilled or plowed.

Presence of a layer containing iron-oxide coatings or plaques on the surfaces of living roots and/or iron-oxide coatings or linings on soil pores immediately surrounding living roots within 12 inches of the soil surface.

Secondary

151

C6: Recent iron reduction in tilled soils

Category: Primary

Redox concentrations as pore linings or soft masses in the tilled surface layer of soils cultivated within the last two years.

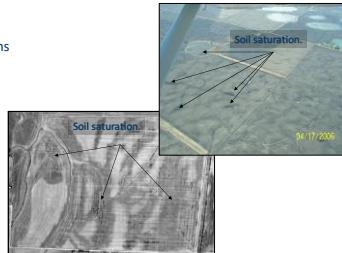
Must be within the plow layer

152

C8: Crayfish burrows

Category: Secondary

General Description: Presence of crayfish burrows, as indicated by openings in soft ground up to 2 in. (5 cm) in diameter, often surrounded by chimney-like mounds of excavated mud.



153

C9: Saturation visible on aerial imagery

Category: Secondary

One or more* recent aerial photographs or satellite images indicate soil saturation. Saturated soil signatures must correspond to field-verified hydric soils, depressions or drainage patterns, differential crop management, or other evidence of a seasonal high water table.

* Use Off-site Guidance Methods.

154

Group D Indicators

Landscape and vegetation characteristics that indicate contemporary wet conditions

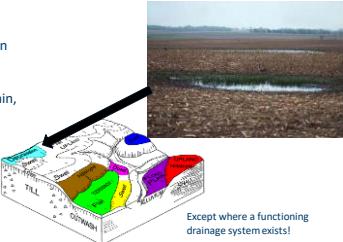
155

D1: Stunted or stressed plants

Category: Secondary

This indicator is present if individuals of the same species growing in the potential wetland are clearly of smaller stature, less vigorous, or stressed compared with individuals growing in nearby non-wetland situations.

This indicator is applicable to natural plant communities as well as agricultural crops and other introduced or planted vegetation. For this indicator to be present, a majority of individuals in the stand must be stunted or stressed.

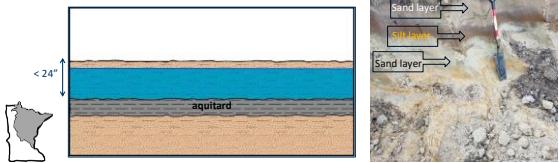


156

D2: Geomorphic position

Category: Secondary

This indicator is present if the area in question is located in a localized depression, linear drainageway, concave position within a floodplain, at the toe of a slope, on the low-elevation fringe of a pond or other water body, or in an area where groundwater discharges.



157

D3: Shallow Aquitard

Category: Secondary

Presence of an aquitard within 24 in. of the soil surface that is potentially capable of perching water within 12 in. of the surface.

158

D4: Microtopographic relief

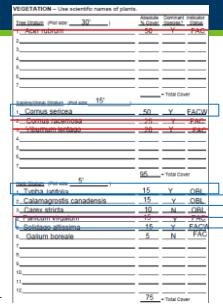
Category: Secondary

Microtopographic features that occur in areas of seasonal inundation or shallow water tables:

- Hummocks
- Tussocks
- Flank-and-strang topography
- Microhighs < 36 in. above the base soil level

159

D5: FAC – neutral test


Category: Secondary

The plant community passes the FAC-neutral test:

1. Compile list of dominant plant species across all strata
2. Drop any with FAC
3. >50 % of remaining dominant species are FACW and/or OBL

If it's an equal number of each, then use non-dominant

*This indicator uses the longer-term nature of plants Does this pass? Yes, 100% remaining species are FACW or

160

Indicator D7: Frost-heave hummocks

Category: Secondary

This indicator consists of hummocky microtopography produced by frost action in saturated wetland soils.

161

Hydrology Indicators

Take home message

- Wetland hydrology is dynamic
- Indicators prove current or recent evidence of hydrology
- Proof = minimum of 1 Primary or 2 Secondary
- Lack of indicator(s) does not confirm absence of wetland hydrology! CH 5 (Difficult Wetland Situations) is a “must read”

162

Hydrology Indicators?

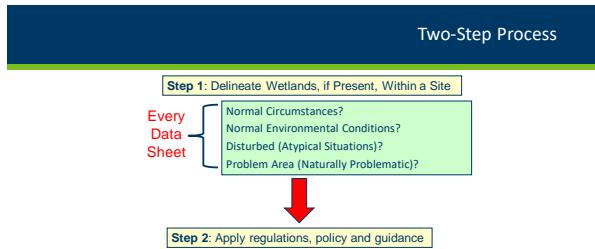
163

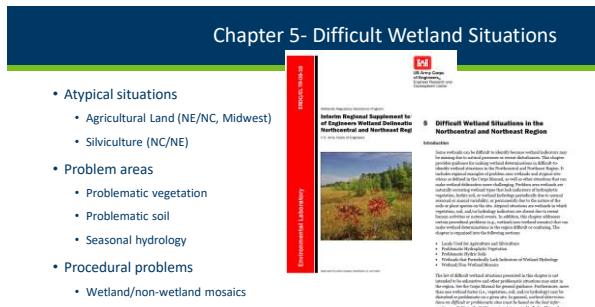
Critical Definitions for Wetland Delineation

164

Critical Definitions

- Wetlands
- Deepwater Aquatic Habitat
- Semipermanently and permanently flooded
- Growing Season
- Disturbed (Atypical Situations)
- Naturally Problematic (Problem Areas)
- Normal Environmental Conditions
- Normal Circumstances




165

166

167

168

What is a Wetland?

"Wetlands are sometimes wet areas where people meet to argue."

Greg Larson

169

- Technical definition:

Those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions.

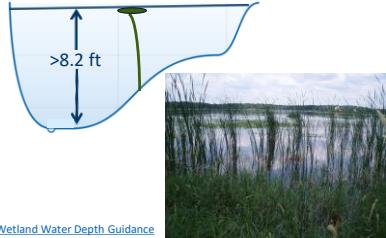
170

Deepwater Habitat

Deepwater aquatic habitats are areas that are permanently inundated at mean annual water depths >8.2 ft or permanently inundated areas less than or equal to 8.2 ft that do not support rooted-emergent or woody plant species

They have the following diagnostic characteristics:

- 1) vegetation- no rooted-emergent or woody plant species are present in these permanently inundated areas
- 2) Soil- the substrate technically is not defined as a soil if the mean water depth is >8.2 ft or if it will not support rooted emergent or woody plants


171

Limits of wetland (depth)- Deepwater Habitat

Important Considerations for Wetlands

- Must be capable of supporting rooted, emergent vegetation.
- Must have soil.

If the water is too deep or fast flowing, cannot support rooted vegetation and soil cannot form (unconsolidated bottom).

[Wetland Water Depth Guidance](#)

172

Permanently and Semipermanently flooded areas

- 2009 Rule language:
- Subp. 51. **Permanently and semipermanently flooded area of a ~~type 1, 2, 3, 4, 5~~ wetland.** "Permanently and semipermanently flooded area of a ~~type 1, 2, 3, 4, 5~~ wetland" means the portion of a ~~type 1, 2, 3, 4, 5~~ wetland below the level where the water has been maintained for a sufficient period of time to leave evidence upon the landscape, commonly the point where the natural vegetation changes from predominantly aquatic to predominantly terrestrial.

173

Permanently and Semipermanently flooded areas- Circular 39 & Eggers & Reed

	Eggers & Reed
1	Seasonally Flooded Basins
1	Floodplain Forests
2	Sedge Meadows
2	Fresh (wet) Meadows
2	Wet to Wet-Mesic Prairies
2	Calcareous Fens
3	Shallow Marsh
4	Deep Marsh
5	Shallow, Open Water
6	Shrub-Carr
6	Alder Thicket
7	Hardwood Swamp
7	Coniferous Swamp
8	Open Bog
8	Coniferous Bog

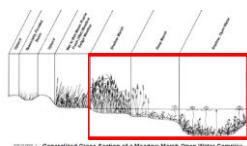


FIGURE 4 - Generalized Cross Section of a Meadow-Marsh-Open Water Complex.

174

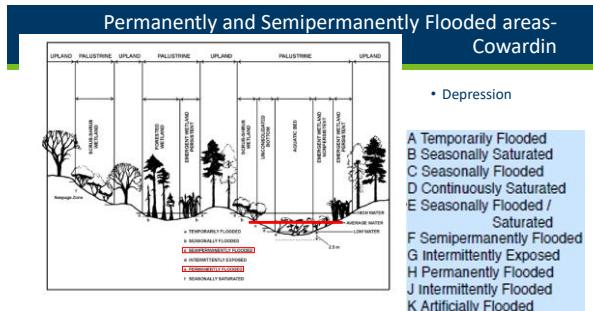


Figure 4. Distinguishing features and examples of habitats in the Palustrine System.

175

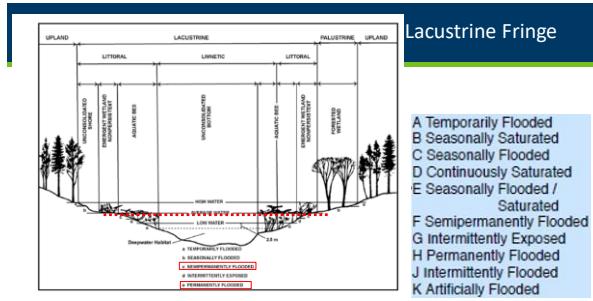
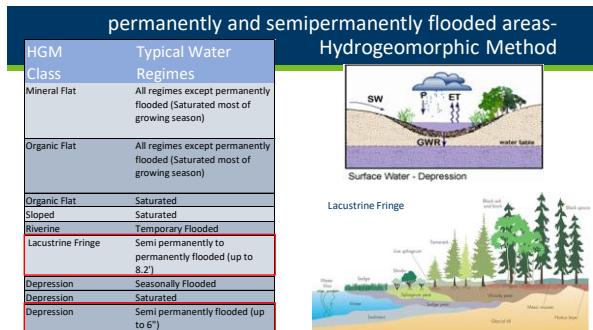



Figure 5. Distinguishing features and examples of habitats in the Lacustrine System.

176

177

Mapping flooded areas

Nontidal

A Temporarily Flooded
B Seasonally Saturated
C Seasonally Flooded
D Continuously Saturated
E Seasonally Flooded / Saturated
F Semipermanently Flooded
G Intermittently Exposed
H Permanently Flooded
J Intermittently Flooded
K Artificially Flooded

178

Why do we care about Growing Season?

Growing season dates are needed to:

- Evaluate and interpret certain wetland hydrology indicators
- Analyze recorded data to determine if wetland hydrology criterion is met

179

Indicators of Start of the Growing Season

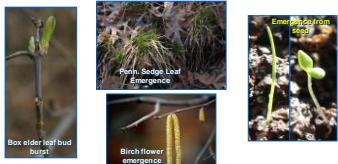
1. Soil temperature at 12 inches is 41° F. or higher

Use a compost thermometer for each site

[Research & Outreach Centers | College of Food, Agricultural and Natural Resource Sciences \(umn.edu\)](https://www.mda.state.mn.us/protecting/soilprotect/ion/soiltemp)

<https://www.mda.state.mn.us/protecting/soilprotect/ion/soiltemp>

2. "Green-up" indicator



180

"Green-Up" Indicator for Start of Growing Season

Two or more species of non-evergreen plants show active growth in a wetland or surrounding area with similar elevation and aspect

181

Start of Growing Season

April site visit:

Two species of non-evergreen plants – reed canary grass and lake sedge – have new, green, aerial leaf/stem growth

Meets the "green-up" indicator for the start of the growing season

182

End of Growing Season

- woody deciduous species lose their leaves

and/or

- the last herbaceous plants cease flowering and their leaves die back

183

Normal Circumstance

- Those areas inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions

HISTORY: In early years of implementing the Section 404 regulatory program, wetland identification was based on vegetation – there were no delineation manuals/3-parameter approach. Cases arose where wetland vegetation was removed (pulled up, burned off, herbicided, etc.) in an attempt to evade wetland regulations. Corps/EPA then adopted the approach of determining whether the area in question would support dominance by wetland vegetation under normal circumstances.

184

Normal Environmental Conditions vs. Normal Circumstances

WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site	City/County	Sampling Date
Applicant/Owner	State	Sampling Point
Investigator(s)	Section, Township, Range	
Landform (valley, terrace, etc.)	Local relief (concave, convex, none)	
Slope (%)	Datum	
Soil Name	Wetland classification	
Normal Environmental Conditions?		
<input checked="" type="checkbox"/> hydrologic conditions on the site typical for this time of year? Yes _____ No _____ If No, go to question Results?		
Are Vegetation _____ Soil _____ or hydrology _____ significantly disturbed? <input checked="" type="checkbox"/> "Normal Circumstances" present? Yes _____ No _____ If needed, go to question Results?		
Are Vegetation _____ Soil _____ or hydrology _____ naturally problematic? <input checked="" type="checkbox"/> "Normal Circumstances"?		

185

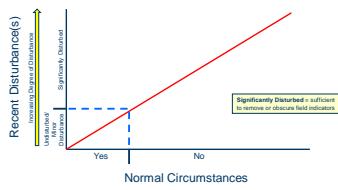
Normal Environmental Conditions vs. Normal Circumstances

- Short-term:** “normal environmental conditions” refers to the climatic conditions of the current year and growing season
- Long-term:** “normal circumstances” refers to the multiple-year/decades-long condition of the site

186

Normal Circumstances

WETLAND DETERMINATION DATA FORM – Midwest Region


Project/Job: _____ City/Country: _____ Sampling Date: _____
 Applicant/Owner: _____ State: _____ Surveying Point: _____
 Investigator(s): _____ Section, Township, Range: _____
 Landform (e.g. slope, terrace, etc.): _____ Local relief (concave, convex, none): _____
 Slope (%): _____ Lat: _____ Long: _____ Datum: _____
 Soil Map Unit Name: _____ NAWI classification: _____
 Are climatic / hydrologic conditions on the site typical for this time of year? Yes: _____ No: _____ If yes, explain in Remarks: _____
 Are Vegetation _____, Soil _____, or Hydrology _____ significantly disturbed? _____ Are "Normal Circumstances" present? Yes: _____ No: _____ If No, explain any issues in Remarks: _____
 Are Vegetation _____, Soil _____, or Hydrology _____ naturally problematic? _____ If Yes, explain any issues in Remarks: _____

If "Yes", data collection is based on current conditions.

If "No", data collection is based on conditions that would exist in absence of recent disturbance(s).

187

Relationship of Normal Circumstances and Recent Disturbance(s)

188

Not Normal Circumstances

Recent, unauthorized fill that buried natural vegetation and native soils, and altered hydrology

189

Normal Circumstances - Hydrology

Example A: Ditch legally constructed in 1950s and maintained since = ditch is established as **Normal Circumstances**. Partially drained is the **normal circumstance** for hydrology.

Example B: Ditch constructed last year; unauthorized side casting of fill materials in wetlands = **NOT Normal Circumstances**

190

Normal Circumstances

Authorized wetland fill
meets the "extent and
relative permanence test"
– establishes a **new**
Normal Circumstance

3. Physical alteration(s) is legally established,
maintained and
represents the long-term condition of the
site; **OR** is a newly-
authorized physical alteration (e.g., a
permitted fill, new concrete
dam).....**Normal
Circumstances**

191

Normal Circumstances – Soils

- **Normal plowing** (e.g., 8- to 9-inch depth) is not considered a "significant" disturbance to soils if does not remove or obscure field indicators of hydric soils
 - Examples: A1, A12
 - However, other field indicators (e.g., F8, some S indicators (sandy))
would be obscured or difficult to determine
- "Deep ripping" or other methods that disturb and mix soil layers at depths greater than normal plowing are **NOT Normal Circumstances**

192

Normal Circumstances - Vegetation

Removal of natural vegetation and replacement with a planted crop = NOT Normal Circumstances

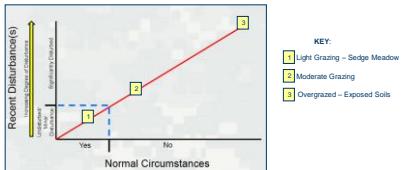
IGNORE the planted crop for purposes of the hydrophytic vegetation determination

When natural vegetation has been removed, focus on soils and hydrology. If a site has wetland hydrology and hydric soils, it would support dominance by hydrophytes under normal circumstances.

193

Normal Circumstances - Vegetation

Sample Point – vegetation not disturbed to the extent that dominant species cannot be accurately identified


Light grazing of a sedge meadow – minor disturbance of natural vegetation = **Normal Circumstances**

Example of an unimproved pasture = no interseeding, planting, etc.

194

Normal Circumstances - Vegetation

What about moderate grazing sufficient to result in a shift of the plant community to species more tolerant of grazing ("increasers") at the expense of other plant species ("decreasers") (see Table 10 in Midwest Supplement for examples). Most cases: **NOT Normal Circumstances.** Follow Midwest Supplement guidance.

195

Normal Circumstances - Vegetation

Natural vegetation removed and replaced by manipulated/manicured vegetation (seeding, mowing, fertilizing, selective herbicide applications) = **NOT Normal Circumstances**

196

Disturbed (Atypical Situations)

- One or more parameters altered or absent due to recent human activities or natural event

Filling, artificial drainage, stream channelization, mechanized land clearing, levee construction, mowing, cropping, plowing, logging, change in river course, high-capacity groundwater well pumping, tree farms, etc.

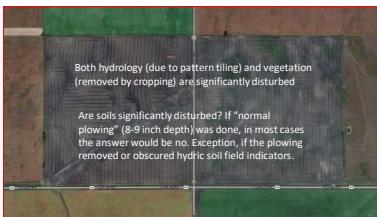
197

Degree of Disturbance(s)

WETLAND DETERMINATION DATA FORM - Midwest Region

ProjectSite:	City/County:	Sampling Date:
ApplicantOwner:	State:	Sampling Point:
Investigator(s):	Section, Township, Range:	
Landform (hillside, terrace, etc.):	Local relief (concave, convex, none):	
Slope (%):	Lat:	Long:
Datum:		
NM classification:		
Are there human alterations on the site typical for this area of wet? Yes _____ No _____ If yes, describe in Remarks:		
<input checked="" type="checkbox"/> Vegetation: But _____ or Hydrology _____ significantly disturbed? <input type="checkbox"/> "Normal Circumstances" present? Yes _____ No _____		
<input type="checkbox"/> Vegetation: But _____ or Hydrology _____ rarely disturbed? <input type="checkbox"/> (If needed, explain any answers in Remarks.)		

Significantly Disturbed = sufficient to remove or obscure field indicators


198

Disturbed (Atypical)

199

Disturbed (Atypical)

200

Problem Areas (Naturally Problematic)

- One or more parameters are absent due to normal seasonal or annual variability, or permanently due to the nature of the soils or plant species
 - Seasonal wetlands
 - Prairie potholes
 - Red clay parent materials
 - FACU-dominated wetlands
 - Inter-dunal swales

201

Problem Areas

WETLAND DETERMINATION DATA FORM - Midwest Region			
Project#	City/City	State	Sampling Date
Applicant/Owner	Section, Township, Range		
Investigation#	Lat/Long (latitude, longitude, etc.)		
Step#	Site#	Local relief (concave, convex, none)	Date
Sat/Mon Name:		MRN classification	
Are climatic / hydrologic conditions on the site typical for this time of year? Yes <input type="checkbox"/> No <input type="checkbox"/> (If no, explain in Remarks.)			
Are Vegetation <input type="checkbox"/> Hydrology <input type="checkbox"/> Soil <input type="checkbox"/> Topography <input type="checkbox"/> present?			
Are "Normal Circumstances" present? Yes <input type="checkbox"/> No <input type="checkbox"/>			
If No, explain any anomalies in Remarks.)			

202

Seasonal Wetlands

203

Problem Areas

Wetlands dominated by non-hydrophytic species like white pine, a Facultative Upland (FACU) species

204

Problem Areas and Normal Circumstances

- EXAMPLE: Vernal pools are naturally dry outside of the first few weeks of the growing season

= Normal Circumstances

205

Problem Areas and Normal Circumstances

Project/Site:	City/County:	Sampling Date:
Applicant/Owner:	State:	Sampling Point:
Investigator(s):	Section, Township, Range:	
Landform (hilltop, terrace, etc.):	Local relief (concave, convex, none):	
Slope (%):	Lat:	Long:
Soil (soil type name):	Depth:	
Are climate or hydrologic conditions on the site typical for this time of year? Yes _____ No <input checked="" type="checkbox"/> If no, explain in Remarks _____		
Are vegetation, soil, or hydrology significantly disturbed? Yes <input checked="" type="checkbox"/> No _____		
Are vegetation, soil, or hydrology <input checked="" type="checkbox"/> naturally problematic? Are "Normal Circumstances" present? Yes <input checked="" type="checkbox"/> No _____		
(If needed, explain any answers in Remarks.)		

206

Normal Circumstances?

Not Normal Circumstances:
removal of natural vegetation

207

U.S. Army Corps of Engineers		OMB Control # 0710-2024 Requirement Control Symbol EXEMPT: (Authority: AR 255-15, paragraph 5-2a)	
WETLAND DETERMINATION DATA SHEET - Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R			
Project/Site:	City/Country:	Sampling Date:	
Applicant/Owner:		State:	Sampling Point:
Investigator(s):		Section, Township, Range:	
Landform (hillside, terrace, etc.):		Local relief (concave, convex, none):	Slope %:
Subdivision (RR or MLRA):	Lat:	Long:	Date:
Sid Map Unit Name:	NWI classification:		
Are climatic / hydrologic conditions on the site typical for this time of year? Yes <input type="checkbox"/> No <input type="checkbox"/> (If no, explain in Remarks.)			
Are Vegetation <input type="checkbox"/> Soil <input type="checkbox"/> Hydrology <input type="checkbox"/> significantly disturbed? Are "Normal Circumstances" present? Yes <input type="checkbox"/> No <input type="checkbox"/>			
Are Vegetation <input type="checkbox"/> Soil <input type="checkbox"/> Hydrology <input type="checkbox"/> naturally problematic? (If needed, explain any answers in Remarks.)			
SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.			
Hydric Soil: Vegetation Present?	Yes <input type="checkbox"/>	No <input type="checkbox"/>	Is the Sampled Area within a Wetland?
Hydric Soil Present?	Yes <input type="checkbox"/>	No <input type="checkbox"/>	Yes <input type="checkbox"/> No <input type="checkbox"/>
Wetland Hydrology Present?	Yes <input type="checkbox"/>	No <input type="checkbox"/>	If yes, optional Wetland Site ID: _____
Remarks: (Explain alternative procedures here or in a separate report.)			

208