

	MN Wetland Restoration Guide
Speaker Demmer	The state

Day One - May 15, 2024

Day Two - May 16, 2024

rep, and Seeding

Peter

Deans Voigt, Shaw

Agenda

2

Topic Introductions & Ho

Definition: Those areas inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of <u>vegetation</u> typically adapted to life in saturated <u>soil</u> conditions.

Hydrology + Vegetation + Soil = Wetland

3 Parameters of a Wetland

- 3 Parameters of a wetland
 - Hydrology- frequency and duration of movement of water through a landscape
 - Soil- organic and mineral surfaces which often exhibit characteristics that it has been in saturated conditions
 - Vegetation- plant community and prevalence of species that have made adaptations to live in saturated conditions

5

6

Hydrogeomorphic Method (HGM)

- Assesses functional conditions of a specific wetland referenced to data collected from wetlands across a range of physical conditions

- Established Classes based on geomorphic, hydrology and hydraulic functions of palustrine wetlands

RIVERINE

- DEPRESSION
- SLOPE
- MINERAL SOIL FLATS
- ORGANIC SOIL FLATS
- ESTUARINE FRINGE
- LACUSTRINE FRINGE

HGM Subclasses

- Determined by:
 - Hydrology Input:
 - Groundwater
 - Surface water
 - Hydrology Output
 - Surface
 - Ground

10

9

HGM Class (subclass)	Hydrology Inputs	Hydrology Outputs	Hydraulics
RIVERINE	surface flow precipitation groundwater	surface flow evapotranspiration	unidirectional
DEPRESSIONAL- surface	surface flow precipitation	groundwater recharge evapotranspiration	unidirectional
DEPRESSIONAL- ground	groundwater precipitation	intermittent surface flow evapotranspiration groundwater recharge	unidirectional
SLOPED- surface	surface flow precipitation	surface flow evapotranspiration groundwater recharge	unidirectional
SLOPED- ground	groundwater surface water precipitation	surface flow evapotranspiration	unidrectional
MINERAL SOIL FLATS	precipitation intermittent surface flow	evapotranspiration intermittent surface flow	unidirectional
ORGANIC SOIL FLATS	groundwater precipitation	intermittent surface flow Evapotranspiration	unidirectional
ESTUARINE FRINGE	surface flow tidal exchange precipitation	tidal exchange surface flow Evapotranspiration	bidirectional
LACUSTRINE FRINGE	surface flow groundwater precipitation	return flow to lake surface flow evapotranspiration	bidirectional

Different water levels leave different evidence

<u>Group A</u> – direct observation of *water*

<u>Group B</u> – evidence of flooding/ponding

Group C =

Hydrology Indicator Groups

<u>Group D</u> – Landscape and veg. characteristics that indicate contemporary wetland conditions.

<u>Group C</u> – evidence of current or recent saturation.

Hydric Soil Development

Hydric soils indicators develop in anaerobic conditions by the process of :

- 1. Reduction and Re-oxidation of Iron
- 2. Organic Matter Accumulation

Foundation of the Field Indicator Manual.

17

Hydric Soil Development and Duration under Aquic Conditions

18

Never Saturated
Oxidized Matrix
Infrequently Saturated
Oxidized Matrix with few
concentrations
Frequently Saturated
Oxidized Matrix with depletions
And concentrations
Very Frequently Saturated
Depleted or Reduced Matrix

With concentrations Permanently Saturated - depleted Or reduced matrix

Hydric Soil Developed in Inundated Conditions

Cross Section of Hydric Soils in Depression Wetlands

Histosol

Thick dark surface

Depleted below dark surface

Redox dark surface

Surface Water - Depression

22

Water table

Cross Section of Hydric Soils in Sloped Wetlands

SW (in)

Ground Water - Slope

Histosol

			_		
		Common Indica	ators for Organic	Flat Wetla	nds
HGM	Typical	Hydrology Indicators	Soil Indicators		
Class				Mar 1	L Stars
	Regimes	Regime	Regime		No. State
Organic Flat	All regimes except permanently flooded (Saturated most of growing season)	A2- High Water Table, A3- Saturation, , B5- Iron Deposits, B9- Water-Stained Leaves, B10- Drainage Patterns, C2- Dry- Season Water Table, D2- Geomorphic Position, D3- Shallow Aquitard, D4- Microtopographic Relief, D5- FAC- neutral test	A1- Histosol, A2- Histic Epipedon, A3- Black Histic, F1- Loamy Mucky Mineral, S1- Sandy Mucky Mineral, S3 2* Mucky Peat		
Organic Fli	at Saturated	A2- High Water Table, A3- Saturation, C2- Dry-Season Water Table, D1- Stunted or Stressed Plants, D5- FAC- neutral test	A1- Histosol, A2- Histic Epipedon, A3- Black Histic		
		direction in	- Janit Mar		ET

Cross Section of Hydric Soil in Mineral Flat Wetlands

Depleted Below dark Surface
 Loamy mucky mineral
 Redox Dark Surface

Surface Water - Extensive Flat

26

Cross Section of Hydric Soils in Organic Flat Wetland

Histosol

- Histic Epipedon
- Loamy mucky mineral

Ground Water - Extensive Flat

Common Indicators for Lacustrine Fringe Wetlands

29

Cross Section of Hydric Soils in Lacustrine Fringe

Histosol
 Thick Dark Surface

30

Wetland Benefits
 Erosion Control Flood Control Ground water recharge & Discharge Water quality Rare Species Habitat Recreation Wildlife Habitat
Source: BWSR Wetland Restoration Guide (U. of MN, 1984)

What does Altered Wetland Mean?

Effectively Drained

A condition where ground or surface water has been removed

42

41

Restoration vs Creation vs Enhancement

- Wetland Restoration
- Wetland Creation
- Wetland Enhancement

What NRCS Practice Standard Number am I?? A. 657 B. 658 C. 659 Wetland Creation В С А Wetland Enhancement А В С Wetland Restoration В С А

What NRCS Practice Standard Number am I?? A. 657 B. 658 C. 659 (в) Wetland Creation А С (c) В Wetland Enhancement А Wetland Restoration (A) в С

46

 • Ground Water Supported
 • Surface Water Supported

 • Ground Water - Slope
 • Surface Water - Slope

Why is it important to know the type of Wetland?

- Influences how they were drained
- How to restore them

47

Example

Surface Water Supported Wetland

Wetlands Farmed Under Natural Conditions

- Hydrology has not been manipulated
- Hydrophytic vegetation has been removed
- Often mapped by NRCS as a "W"

50

Wetlands Farmed under Natural Conditions

• Restoration is achieved by re-establishing hydrophytic vegetation

Drained and Altered Wetlands

- Hydrology has been manipulated
- Often mapped by NRCS as a "FW" and "PC"

Drained and Altered Wetlands

Restoration should address both hydrology and vegetation

Common Restoration Strategies

- Tile Blocks
- Outletting Incoming Drainage Tile
- Rerouting Tile and Ditch Systems
- Removing, Relocating, and Installing Drainage Lift Stations
- Sediment/Vegetation Removal
- Ditch Blocks and Fills
- Earthen Embankments
- Wetland Outlets
- 55

53

Statewide Wetland Restoration Strategy

- Developed in 2009
- Prioritize Restorations
- Improve coordination
- Design and Produce Better Wetland Restorations

Source: MN Wetland Restoration Guide

- Targeted Wildlife
- Improve downstream water quality
- Flood Control
- Groundwater Protection
- Increased Landscape Diversity
- Targeted plant communities
- Specific management objectives

Considerations for Goals & Objectives

- Identify general goals
- Be realistic
- Be consistent with
 - Programs
 - Agencies
 - Sponsoring Organizations

Source: MN Wetland Restoration Guide

Source: MN Wetland Restoration Guide

Engineering Site Assessments for Wetlands

May 2024

First glance

What are the first aspects of a site you should look for?

- What has not changed over the years?
- SOILS
- What <u>has</u> changed? (-Likely, to i
- HYDROLOGY
- What else hasn't changed; impacts wa
- TOPOGRAPHY

66

Investigation role

You don't have to have all the answers but know what questions to ask.

The line from site assessment (i.e. what's possible and feasible) to design (what will actually work) is blurry!

67

PROGRAM RULES

68

https://bravozone.us

(first name is fine) • Questions are 30 sec. • Have EFH Fig 14-34 ready

You'll need to enter your name

ID: 0097

75

Soils

Engineering Properties Report

Example 2 – Freeborn County

+

11000.0140 12532-35

86

88

89

work in small groups

Design Example Example 3 – Jackson County Site assessment today, design tomorrow

BOARD OF WATER AND SOIL RESOURCES

	Site Asse	essment	
	Site Assessment Table		
Site	Information	Importance for Restoration Plan Development	Comments
Assessment	Site History	Historical landuce can have a big influence on the potential for native seedbank and soil health, as well as the presence of weeds.	
Table	Surrounding Landuse and Stressors	Surrounding landuses can cause sedimentation, the introduction of pollutants, nutrients or pesticides, as well as the introduction of aggressive species.	
	Topography	Site contours will help determine potential areas of nutrient and pollutant concentrations as well as planting zones, used mixes, and other planting strategies.	
	Geology and Solis Information	Geology and solis influence ensuion potential as well as nutrient levels, inflitution rates and seeding zones.	
	Hydrology	The flow of water, areas of concentrated flow, depth to groundwater influence restoration strategies and appropriate seed mixes and other plant materials.	
	Existing Vegetation/Seedbank	Existing native or invasive species plants or seed influences the planning of site preparation, planting, and maintenance strategies.	
	Unique Natural Resources	Fere, seeps, rare species, nesting locations and rock outcrops are all examples of unique natural neocurons that should be noted as part of the site assessment.	
	Wildlife Specific Opportunities	Opportantities such as connections that can be made between habitats and opportunities to maximize habitat for specific species should be incorporated into the restoration plan.	
D	Other Opportunities		

BWSR	Site Assessment	BWSR	Site History
Site Assessmen Table Site Assess Information Site History	t ment Table Importance for Restoration Plan Development Historical landuse can have a big influence on the potential for native sedbank and soil health, as well as the presence of weeds.	•Site - - - -	History General history (photos, land survey, vegetation) Agriculture (types, duration, and intensity) (Landowner) Hydrology alteration (Landowner/Conservation District) Site management (Landowner/Conservation District) D
6		107	

Site	e Assessment	
Site Assessment Table		
Surrounding Landuse and Stressors	Surrounding landuses can cause sedimentation, the introduction of pollutants, nutrients or pesticides, as well as the introduction of aggressive species.	
	D	

Bite Assessment Site Assessment Table Topography Interest and polycant concentrations as well as planting zones, seed mixes, and other planting strategies.

	ņ	Тородгарһу
	D	•Topography Site contours will help determine potential areas of nutrient and pollutant concentrations as well as planting zones, seed mixes, and other planting strategies.
121		

BWSR	Geology and Soils	
Site Assessment	Table	
Geology and Soils Information	Geology and solls influence erosion potential as well as nutrient levels, infiltration rates and seeding zones.	
	()	К

		Hydrology	
S	ite Assessment Table		
	Hydrology	The flow of water, areas of concentrated flow, depth to groundwater influence restoration strategies and appropriate seed mixes and other plant materials.]
			D
135			

Existing Vegetation and Seedbank

Existing Vegetation and Seedbank

Assessing Existing Vegetation

- Early successional weeds
-Invasive vegetation

Native vegetation

144

Existing Vegetation and Seedbank

Existing Vegetation and Seedbank

Benefits: Good method to maximize the Use of local species.

Limitations: Some species are not common from seedbank. It can be difficult to find seedbank layers where sediment accumulation has occurred.

Existing Vegetation and Seedbank

MN Wetland Restorat 5: B.Imasive Species Control (odf)

151

ENDD 5E Seed Bank Testing Protocol Seed Bank Composition of Wetlands – Seed Emergence Methodology Developed by Juff Lee of Borr Engineering Field collection of soil samples · Grow and document seedlings over the course of four months

	Unique I	Natural Resources
	Site Assessment Table	
	Unique Natural Resources	Fens, seeps, rare species, nesting locations and rock outcrops are all examples of unique natural resources that should be noted as part of the site assessment.
	Peatlands - A Restorable, Car MN Board of Water, Soil Res	bon-Rich Resource] ources (state.mn.us)
153		

	ewse.	Wildlife Sj	pecific Opportunities
	Site Assess	ment Table	
	Wildlife Spec	ific Opportunities	Opportunities such as connections that can be made between habitats and opportunities to maximize habitat for specific species should be incorporated into the restoration plan.
157			

Wildlife Specific Opportunities

 Other Opportunities

 Site Assessment Table

 Other Opportunities

 Incorporate Landowner Preferences, as able

 Cultural Resources

 Timelines

Field Site – Banking Site

½ mi. wide x 1 mi. tall 294 ac.

163

Site Assessment Table			
bilamation.	Importance for Restoration Plan Development	Campeets	
Statilitory	Historical landese can have a big influence on the patiential for native sections and soliticality, as well as the presence of weeds.		20. Design of the second
Sorrounding Landizon and Stressors	Someonding landcoses can cause sadimentation, the introduction of pollutants, nutrients or posticides, as well as the introduction of aggressile species.		
Trangnohy	Site contours will help determine potential areas of nutrient and pollutant concentrations as well as planting zones, seed mixes, and other planting strategies.		Tage: Composition and Composition Composite Composition Compositi Composition Composition Composit
Geology and Solis Information	Geology and soft-influence movies potential as well as subfert levels, influenties rates and seeding somes.		The second
Huthology	The flow of water, areas of concentrated flow, dipth to groundwater influence restaration strategies and appropriate used mixes and other alart materials.		Construction of the second secon
Easing Vigitation/Southank	Existing native or invasive species plants or used influences the planning of site preparation, planting, and maintenance stratuates.		WARLOW Kalan (pulue kalam
Unique Natural Researces	Ferm, simps, name species, mealing locations and radi suttroops are all examples of unique natural resources that should be natural as part of the site assessment.		Distribution Construction Construction Construction Mildel: Distribution Construction Construction Distribution Construction Distribution Distribution Distribution Distribution Construction Distribution Distribution D
Wildlife Specific Opportunities	Opportunities such as connections that can be made between habitats and apportunities to maintize habitat for specific species should be incorporated into the real evaluation glas.		Construction in the construction of the c

5/16/2024

