Subpart B—Compliance With the Guidelines

Sec. 230.10 Restrictions on discharge.

Note: Because other laws may apply to particular discharges and because the Corps of Engineers or State 404 agency may have additional procedural and substantive requirements, a discharge complying with the requirement of these Guidelines will not automatically receive a permit.

Although all requirements in Sec. 230.10 must be met, the compliance evaluation procedures will vary to reflect the seriousness of the potential for adverse impacts on the aquatic ecosystems posed by specific dredged or fill material discharge activities.

(a) Except as provided under section 404(b)(2), no discharge of dredged or fill material shall be permitted if there is a practicable alternative to the proposed discharge which would have less adverse impact on the aquatic ecosystem, so long as the alternative does not have other significant adverse environmental consequences.

(1) For the purpose of this requirement, practicable alternatives include, but are not limited to:

(i) Activities which do not involve a discharge of dredged or fill material into the waters of the United States or ocean waters;

(ii) Discharges of dredged or fill material at other locations in waters of the United States or ocean waters;

(2) An alternative is practicable if it is available and capable of being done after taking into consideration cost, existing technology, and logistics in light of overall project purposes. If it is otherwise a practicable alternative, an area not presently owned by the applicant, which could reasonably be obtained, utilized, expanded or managed in order to fulfill the basic purpose of the proposed activity may be considered.

(3) Where the activity associated with a discharge which is proposed for a special aquatic site (as defined in subpart E) does not require access or proximity to or sighting within the special aquatic site in question to fulfill its basic purpose (i.e., is not "water dependent"), practicable alternatives that do not involve special aquatic sites are presumed to be available, unless clearly demonstrated otherwise. In addition, where a discharge is proposed for a special aquatic site, all practicable alternatives to the proposed discharge, which do not involve a discharge into a special aquatic site are presumed to have less adverse impact on the aquatic ecosystem, unless clearly demonstrated otherwise.

(4) For actions subject to NEPA, where the Corps of Engineers is the permitting agency, the analysis of alternatives required for NEPA environmental documents, including supplemental Corps NEPA documents, will in most cases provide the
information for the evaluation of alternatives under these Guidelines. On occasion, these NEPA documents may address a broader range of alternatives than required to be considered under this paragraph or may not have considered the alternatives in sufficient detail to respond to the requirements of these Guidelines. In the latter case, it may be necessary to supplement these NEPA documents with this additional information.

(5) To the extent that practicable alternatives have been identified and evaluated under a Coastal Zone Management program, a section 208 program, or other planning process, such evaluation shall be considered by the permitting authority as part of the consideration of alternatives under the Guidelines. Where such evaluation is less complete than that contemplated under this subsection, it must be supplemented accordingly.

(b) No discharge of dredged or fill material shall be permitted if it:

(1) Causes or contributes, after consideration of disposal site dilution and dispersion, to violations of any applicable State water quality standard;

(2) Violates any applicable toxic effluent standard or prohibition under section 307 of the Act;

(3) Jeopardizes the continued existence of species listed as endangered or threatened under the Endangered Species Act of 1973, as amended, or results in likelihood of the destruction or adverse modification of a habitat which is determined by the Secretary of Interior or Commerce, as appropriate, to be a critical habitat under the Endangered Species Act of 1973, as amended. If an exemption has been granted by the Endangered Species Committee, the terms of such exemption shall apply, in lieu of this subparagraph;

(4) Violates any requirement imposed by the Secretary of Commerce to protect any marine sanctuary designated under title III of the Marine Protection, Research, and Sanctuaries Act of 1972.

(c) Except as provided under section 404(b)(2), no discharge of dredged or fill material shall be permitted which will cause or contribute to significant degradation of the waters of the United States. Findings of significant degradation related to the proposed discharge shall be based upon appropriate factual determinations, evaluations, and tests required by subparts B and G, after consideration of subparts C through F, with special emphasis on the persistence and permanence of the effects outlined in those subparts. Under these Guidelines, effects contributing to significant degradation considered individually or collectively, include:

(1) Significantly adverse effects of the discharge of pollutants on human health or welfare, including but not limited to effects on municipal water supplies, plankton, fish, shellfish, wildlife, and special aquatic sites.

(2) Significantly adverse effects of the discharge of pollutants on life stages of aquatic life and other wildlife dependent on aquatic ecosystems, including the transfer, concentration, and spread of pollutants or their byproducts outside of the disposal site through biological, physical, and chemical processes;

(3) Significantly adverse effects of the discharge of pollutants on aquatic ecosystem diversity, productivity, and stability. Such effects may include, but are not limited to, loss of fish and wildlife habitat or loss of the capacity of a wetland to assimilate nutrients, purify water, or reduce wave energy; or
(4) Significantly adverse effects of discharge of pollutants on recreational, aesthetic, and economic values.

(d) Except as provided under section 404(b)(2), no discharge of dredged or fill material shall be permitted unless appropriate and practicable steps have been taken which will minimize potential adverse impacts of the discharge on the aquatic ecosystem. Subpart H identifies such possible steps.

Sec. 230.11 Factual Determinations.

The permitting authority shall determine in writing the potential short-term or long-term effects of a proposed discharge of dredged or fill material on the physical, chemical, and biological components of the aquatic environment in light of subparts C through F. Such factual determinations shall be used in Sec. 230.12 in making findings of compliance or non-compliance with the restrictions on discharge in Sec. 230.10. The evaluation and testing procedures described in Sec. 230.60 and Sec. 230.61 of subpart G shall be used as necessary to make, and shall be described in, such determination. The determinations of effects of each proposed discharge shall include the following:

(a) Physical substrate determinations. Determine the nature and degree of effect that the proposed discharge will have, individually and cumulatively, on the characteristics of the substrate at the proposed disposal site. Consideration shall be given to the similarity in particle size, shape, and degree of compaction of the material proposed for discharge and the material constituting the substrate at the disposal site, and any potential changes in substrate elevation and bottom contours, including changes outside of the disposal site which may occur as a result of erosion, slumping, or other movement of the discharged material. The duration and physical extent of substrate changes shall also be considered. The possible loss of environmental values (Sec. 230.20) and actions to minimize impact (subpart H) shall also be considered in making these determinations. Potential changes in substrate elevation and bottom contours shall be predicted on the basis of the proposed method, volume, location, and rate of discharge, as well as on the individual and combined effects of current patterns, water circulation, wind and wave action, and other physical factors that may affect the movement of the discharged material.

(b) Water circulation, fluctuation, and salinity determinations. Determine the nature and degree of effect that the proposed discharge will have individually and cumulatively on water, current patterns, circulation including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry, salinity, clarity, color, odor, taste, dissolved gas levels, temperature, nutrients, and eutrophication plus other appropriate characteristics. Consideration shall also be given to the potential diversion or obstruction of flow, alterations of bottom contours, or other significant changes in the hydrologic regime. Additional consideration of the possible loss of environmental values (Secs. 230.23 through 230.25) and actions to minimize impacts (subpart H), shall be used in making these determinations. Potential significant effects on the current patterns, water circulation, normal water fluctuation and salinity shall be evaluated on the basis of the proposed method, volume, location, and rate of discharge.

(c) Suspended particulate/turbidity determinations. Determine the nature and degree of effect that the proposed discharge will have, individually and cumulatively, in terms of potential changes in the kinds and concentrations of suspended particulate/turbidity in the vicinity of the disposal site. Consideration shall be given to the grain size of the material proposed for discharge, the shape and size of the plume of suspended particulates, the
duration of the discharge and resulting plume and whether or not the potential changes will cause violations of applicable water quality standards. Consideration should also be given to the possible loss of environmental values (Sec. 230.21) and to actions for minimizing impacts (subpart H). Consideration shall include the proposed method, volume, location, and rate of discharge, as well as the individual and combined effects of current patterns, water circulation and fluctuations, wind and wave action, and other physical factors on the movement of suspended particulates.

(d) Contaminant determinations. Determine the degree to which the material proposed for discharge will introduce, relocate, or increase contaminants. This determination shall consider the material to be discharged, the aquatic environment at the proposed disposal site, and the availability of contaminants.

(e) Aquatic ecosystem and organism determinations. Determine the nature and degree of effect that the proposed discharge will have, both individually and cumulatively, on the structure and function of the aquatic ecosystem and organisms. Consideration shall be given to the effect at the proposed disposal site of potential changes in substrate characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and salinity, on the reorganization and existence of indigenous aquatic organisms or communities. Possible loss of environmental values (Sec. 230.31), and actions to minimize impacts (subpart H) shall be examined. Tests as described in Sec. 230.61 (Evaluation and Testing), may be required to provide information on the effect of the discharge material on communities, or populations of organisms expected to be exposed to it.

(f) Proposed disposal site determinations.

(1) Each disposal site shall be specified through the application of these Guidelines. The mixing zone shall be confined to the smallest practicable zone within each specified disposal site that is consistent with the type of dispersion determined to be appropriate by the application of these Guidelines. In a few special cases under unique environmental conditions, where there is adequate justification to show that widespread dispersion by natural means will result in no significantly adverse environmental effects, the discharged material may be intended to be spread naturally in a very thin layer over a large area of the substrate rather than be contained within the disposal site.

(2) The permitting authority and the Regional Administrator shall consider the following factors in determining the acceptability of a proposed mixing zone:

 (i) Depth of water at the disposal site;
 (ii) Current velocity, direction, and variability at the disposal site;
 (iii) Degree of turbulence;
 (iv) Stratification attributable to causes such as obstructions, salinity or density profiles at the disposal site;
 (v) Discharge vessel speed and direction, if appropriate;
 (vi) Rate of discharge;
 (vii) Ambient concentration of constituents of interest;
 (viii) Dredged material characteristics, particularly concentrations of constituents, amount of material, type of material (sand, silt, clay, etc.) and settling velocities;
 (ix) Number of discharge actions per unit of time;
 (x) Other factors of the disposal site that affect the rates and patterns of mixing.

(g) Determination of cumulative effects on the aquatic ecosystem.
Cumulative impacts are the changes in an aquatic ecosystem that are attributable to the collective effect of a number of individual discharges of dredged or fill material. Although the impact of a particular discharge may constitute a minor change, in itself, the cumulative effect of numerous such piecemeal changes can result in a major impairment of the water resources and interfere with the productivity and water quality of existing aquatic ecosystems.

Cumulative effects attributable to the discharge of dredged or fill material in waters of the United States should be predicted to the extent reasonable and practical. The permitting authority shall collect information and solicit information from other sources about the cumulative impacts on the aquatic ecosystem. This information shall be documented and considered during the decision-making process concerning the evaluation of individual permit applications, the issuance of a General permit, and monitoring and enforcement of existing permits.

(h) Determination of secondary effects on the aquatic ecosystem.

Secondary effects are effects on an aquatic ecosystem that are associated with a discharge of dredged or fill materials, but do not result from the actual placement of the dredged or fill material. Information about secondary effects on aquatic ecosystems shall be considered prior to the time final section 404 action is taken by permitting authorities.

Some examples of secondary effects on an aquatic ecosystem are fluctuating water levels in an impoundment and downstream associated with the operation of a dam, septic tank leaching and surface runoff from residential or commercial developments on fill, and leachate and runoff from a sanitary landfill located in waters of the U.S. Activities to be conducted on fast land created by the discharge of dredged or fill material in waters of the United States may have secondary impacts within those waters which should be considered in evaluating the impact of creating those fast lands.

Sec. 230.12 Findings of compliance or non-compliance with the restrictions on discharge.

(a) On the basis of these Guidelines (subparts C through G) the proposed disposal sites for the discharge of dredged or fill material must be:

(1) Specified as complying with the requirements of these Guidelines; or

(2) Specified as complying with the requirements of these Guidelines with the inclusion of appropriate and practicable discharge conditions (see subpart H) to minimize pollution or adverse effects to the affected aquatic ecosystems; or

(3) Specified as failing to comply with the requirements of these Guidelines where:

(i) There is a practicable alternative to the proposed discharge that would have less adverse effect on the aquatic ecosystem, so long as such alternative does not have other significant adverse environmental consequences; or

(ii) The proposed discharge will result in significant degradation of the aquatic ecosystem under Sec. 230.10(b) or (c); or

(iii) The proposed discharge does not include all appropriate and practicable measures to minimize potential harm to the aquatic ecosystem; or
(iv) There does not exist sufficient information to make a reasonable judgment as to whether the proposed discharge will comply with these Guidelines.

(b) Findings under this section shall be set forth in writing by the permitting authority for each proposed discharge and made available to the permit applicant. These findings shall include the factual determinations required by Sec. 230.11, and a brief explanation of any adaptation of these Guidelines to the activity under consideration. In the case of a General permit, such findings shall be prepared at the time of issuance of that permit rather than for each subsequent discharge under the authority of that permit.

Subpart C--Potential Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem

Note: The effects described in this subpart should be considered in making the factual determinations and the findings of compliance or non-compliance in subpart B.

Sec. 230.20 Substrate.

(a) The substrate of the aquatic ecosystem underlies open waters of the United States and constitutes the surface of wetlands. It consists of organic and inorganic solid materials and includes water and other liquids or gases that fill the spaces between solid particles.

(b) Possible loss of environmental characteristics and values: The discharge of dredged or fill material can result in varying degrees of change in the complex physical, chemical, and biological characteristics of the substrate. Discharges which alter substrate elevation or contours can result in changes in water circulation, depth, current pattern, water fluctuation and water temperature. Discharges may adversely affect bottom-dwelling organisms at the site by smothering immobile forms or forcing mobile forms to migrate. Benthic forms present prior to a discharge are unlikely to recolonize on the discharged material if it is very dissimilar from that of the discharge site. Erosion, slumping, or lateral displacement of surrounding bottom of such deposits can adversely affect areas of the substrate outside the perimeters of the disposal site by changing or destroying habitat. The bulk and composition of the discharged material and the location, method, and timing of discharges may all influence the degree of impact on the substrate.

Sec. 230.21 Suspended particulates/turbidity.

(a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles, usually smaller than silt, and organic particles. Suspended particulates may enter water bodies as a result of land runoff, flooding, vegetative and planktonic breakdown, resuspension of bottom sediments, and man's activities including dredging and filling. Particulates may remain suspended in the water column for variable periods of time as a result of such factors as agitation of the water mass, particulate specific gravity, particle shape, and physical and chemical properties of particle surfaces.

(b) Possible loss of environmental characteristics and values: The discharge of dredged or fill material can result in greatly elevated levels of suspended particulates in the water column for varying lengths of time. These new levels may reduce light penetration and lower the rate of photosynthesis and the primary productivity of an aquatic area if they last long enough. Sight-dependent species may suffer reduced feeding ability leading to limited growth and lowered resistance to disease if high levels of suspended particulates
persist. The biological and the chemical content of the suspended material may react with the dissolved oxygen in the water, which can result in oxygen depletion. Toxic metals and organics, pathogens, and viruses absorbed or adsorbed to fine-grained particulates in the material may become biologically available to organisms either in the water column or on the substrate. Significant increases in suspended particulate levels create turbid plumes which are highly visible and aesthetically displeasing. The extent and persistence of these adverse impacts caused by discharges depend upon the relative increase in suspended particulates above the amount occurring naturally, the duration of the higher levels, the current patterns, water level, and fluctuations present when such discharges occur, the volume, rate, and duration of the discharge, particulate deposition, and the seasonal timing of the discharge.

Sec. 230.22 Water.

(a) Water is the part of the aquatic ecosystem in which organic and inorganic constituents are dissolved and suspended. It constitutes part of the liquid phase and is contained by the substrate. Water forms part of a dynamic aquatic life-supporting system. Water clarity, nutrients and chemical content, physical and biological content, dissolved gas levels, pH, and temperature contribute to its life-sustaining capabilities.

(b) Possible loss of environmental characteristics and values: The discharge of dredged or fill material can change the chemistry and the physical characteristics of the receiving water at a disposal site through the introduction of chemical constituents in suspended or dissolved form. Changes in the clarity, color, odor, and taste of water and the addition of contaminants can reduce or eliminate the suitability of water bodies for populations of aquatic organisms, and for human consumption, recreation, and aesthetics. The introduction of nutrients or organic material to the water column as a result of the discharge can lead to a high biochemical oxygen demand (BOD), which in turn can lead to reduced dissolved oxygen, thereby potentially affecting the survival of many aquatic organisms. Increases in nutrients can favor one group of organisms such as algae to the detriment of other more desirable types such as submerged aquatic vegetation, potentially causing adverse health effects, objectionable tastes and odors, and other problems.

Sec. 230.23 Current patterns and water circulation.

(a) Current patterns and water circulation are the physical movements of water in the aquatic ecosystem. Currents and circulation respond to natural forces as modified by basin shape and cover, physical and chemical characteristics of water strata and masses, and energy dissipating factors.

(b) Possible loss of environmental characteristics and values: The discharge of dredged or fill material can modify current patterns and water circulation by obstructing flow, changing the direction or velocity of water flow, changing the direction or velocity of water flow and circulation, or otherwise changing the dimensions of a water body. As a result, adverse changes can occur in: Location, structure, and dynamics of aquatic communities; shoreline and substrate erosion and deposition rates; the deposition of suspended particulates; the rate and extent of mixing of dissolved and suspended components of the water body; and water stratification.

Sec. 230.24 Normal water fluctuations.

(a) Normal water fluctuations in a natural aquatic system consist of daily, seasonal, and
annual tidal and flood fluctuations in water level. Biological and physical components of such a system are either attuned to or characterized by these periodic water fluctuations.

(b) Possible loss of environmental characteristics and values: The discharge of dredged or fill material can alter the normal water-level fluctuation pattern of an area, resulting in prolonged periods of inundation, exaggerated extremes of high and low water, or a static, non-fluctuating water level. Such water level modifications may change salinity patterns, alter erosion or sedimentation rates, aggravate water temperature extremes, and upset the nutrient and dissolved oxygen balance of the aquatic ecosystem. In addition, these modifications can alter or destroy communities and populations of aquatic animals and vegetation, induce populations of nuisance organisms, modify habitat, reduce food supplies, restrict movement of aquatic fauna, destroy spawning areas, and change adjacent, upstream, and downstream areas.

Sec. 230.25 Salinity gradients.

(a) Salinity gradients form where salt water from the ocean meets and mixes with fresh water from land.

(b) Possible loss of environmental characteristics and values: Obstructions which divert or restrict flow of either fresh or salt water may change existing salinity gradients. For example, partial blocking of the entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and out of that area can effectively lower the volume of salt water available for mixing within that estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation zone and requiring salinity-dependent aquatic biota to adjust to the new conditions, move to new locations if possible, or perish. In the freshwater zone, discharge operations in the upstream regions can have equally adverse impacts. A significant reduction in the volume of fresh water moving into an estuary below that which is considered normal can affect the location and type of mixing thereby changing the characteristic salinity patterns. The resulting changed circulation pattern can cause the upstream migration of the salinity gradient displacing the maximum sedimentation zone. This migration may affect those organisms that are adapted to freshwater environments. It may also affect municipal water supplies.

Note: Possible actions to minimize adverse impacts regarding site characteristics can be found in subpart H.

Subpart D--Potential Impacts on Biological Characteristics of the Aquatic Ecosystem

Note: The impacts described in this subpart should be considered in making the factual determinations and the findings of compliance or non-compliance in subpart B.

Sec. 230.30 Threatened and endangered species.

(a) An endangered species is a plant or animal in danger of extinction throughout all or a significant portion of its range. A threatened species is one in danger of becoming an endangered species in the foreseeable future throughout all or a significant portion of its range. Listings of threatened and endangered species as well as critical habitats are maintained by some individual States and by the U.S. Fish and Wildlife Service of the
Department of the Interior (codified annually at 50 CFR 17.11). The Department of Commerce has authority over some threatened and endangered marine mammals, fish and reptiles.

(b) Possible loss of values: The major potential impacts on threatened or endangered species from the discharge of dredged or fill material include:

1. Covering or otherwise directly killing species;
2. The impairment or destruction of habitat to which these species are limited. Elements of the aquatic habitat which are particularly crucial to the continued survival of some threatened or endangered species include adequate good quality water, spawning and maturation areas, nesting areas, protective cover, adequate and reliable food supply, and resting areas for migratory species. Each of these elements can be adversely affected by changes in either the normal water conditions for clarity, chemical content, nutrient balance, dissolved oxygen, pH, temperature, salinity, current patterns, circulation and fluctuation, or the physical removal of habitat; and
3. Facilitating incompatible activities.

(c) Where consultation with the Secretary of the Interior occurs under section 7 of the Endangered Species Act, the conclusions of the Secretary concerning the impact(s) of the discharge on threatened and endangered species and their habitat shall be considered final.

Sec. 230.31 Fish, crustaceans, mollusks, and other aquatic organisms in the food web.

(a) Aquatic organisms in the food web include, but are not limited to, finfish, crustaceans, mollusks, insects, annelids, planktonic organisms, and the plants and animals on which they feed and depend upon for their needs. All forms and life stages of an organism, throughout its geographic range, are included in this category.

(b) Possible loss of values: The discharge of dredged or fill material can variously affect populations of fish, crustaceans, mollusks and other food web organisms through the release of contaminants which adversely affect adults, juveniles, larvae, or eggs, or result in the establishment or proliferation of an undesirable competitive species of plant or animal at the expense of the desired resident species. Suspended particulates settling on attached or buried eggs can smother the eggs by limiting or sealing off their exposure to oxygenated water. Discharge of dredged and fill material may result in the debilitation or death of sedentary organisms by smothering, exposure to chemical contaminants in dissolved or suspended form, exposure to high levels of suspended particulates, reduction in food supply, or alteration of the substrate upon which they are dependent. Mollusks are particularly sensitive to the discharge of material during periods of reproduction and growth and development due primarily to their limited mobility. They can be rendered unfit for human consumption by tainting, by production and accumulation of toxins, or by ingestion and retention of pathogenic organisms, viruses, heavy metals or persistent synthetic organic chemicals. The discharge of dredged or fill material can redirect, delay, or stop the reproductive and feeding movements of some species of fish and crustacean, thus preventing their aggregation in accustomed places such as spawning or nursery grounds and potentially leading to reduced populations. Reduction of detrital feeding species or other representatives of lower trophic levels can impair the flow of energy from primary consumers to higher trophic levels. The reduction or potential elimination
of food chain organism populations decreases the overall productivity and nutrient export capability of the ecosystem.

Sec. 230.32 Other wildlife.

(a) Wildlife associated with aquatic ecosystems are resident and transient mammals, birds, reptiles, and amphibians.

(b) Possible loss of values: The discharge of dredged or fill material can result in the loss or change of breeding and nesting areas, escape cover, travel corridors, and preferred food sources for resident and transient wildlife species associated with the aquatic ecosystem. These adverse impacts upon wildlife habitat may result from changes in water levels, water flow and circulation, salinity, chemical content, and substrate characteristics and elevation. Increased water turbidity can adversely affect wildlife species which rely upon sight to feed, and disrupt the respiration and feeding of certain aquatic wildlife and food chain organisms. The availability of contaminants from the discharge of dredged or fill material may lead to the bioaccumulation of such contaminants in wildlife. Changes in such physical and chemical factors of the environment may favor the introduction of undesirable plant and animal species at the expense of resident species and communities. In some aquatic environments lowering plant and animal species diversity may disrupt the normal functions of the ecosystem and lead to reductions in overall biological productivity.

Note: Possible actions to minimize adverse impacts regarding characteristics of biological components of the aquatic ecosystem can be found in subpart H.

Subpart E--Potential Impacts on Special Aquatic Sites

Note: The impacts described in this subpart should be considered in making the factual determinations and the findings of compliance or non-compliance in subpart B. The definition of special aquatic sites is found in Sec. 230.3(q-1).

Sec. 230.40 Sanctuaries and refuges.

(a) Sanctuaries and refuges consist of areas designated under State and Federal laws or local ordinances to be managed principally for the preservation and use of fish and wildlife resources.

(b) Possible loss of values: Sanctuaries and refuges may be affected by discharges of dredged or fill material which will:

1. Disrupt the breeding, spawning, migratory movements or other critical life requirements of resident or transient fish and wildlife resources;
2. Create unplanned, easy and incompatible human access to remote aquatic areas;
3. Create the need for frequent maintenance activity;
4. Result in the establishment of undesirable competitive species of plants and animals;
5. Change the balance of water and land areas needed to provide cover, food, and
other fish and wildlife habitat requirements in a way that modifies sanctuary or refuge management practices;

(6) Result in any of the other adverse impacts discussed in subparts C and D as they relate to a particular sanctuary or refuge.

Sec. 230.41 Wetlands.

(a) Wetlands consist of areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions.

(2) Where wetlands are adjacent to open water, they generally constitute the transition to upland. The margin between wetland and open water can best be established by specialists familiar with the local environment, particularly where emergent vegetation merges with submerged vegetation over a broad area in such places as the lateral margins of open water, headwaters, rainwater catch basins, and groundwater seeps. The landward margin of wetlands also can best be identified by specialists familiar with the local environment when vegetation from the two regions merges over a broad area.

(3) Wetland vegetation consists of plants that require saturated soils to survive (obligate wetland plants) as well as plants, including certain trees, that gain a competitive advantage over others because they can tolerate prolonged wet soil conditions and their competitors cannot. In addition to plant populations and communities, wetlands are delimited by hydrological and physical characteristics of the environment. These characteristics should be considered when information about them is needed to supplement information available about vegetation, or where wetland vegetation has been removed or is dormant.

(b) Possible loss of values: The discharge of dredged or fill material in wetlands is likely to damage or destroy habitat and adversely affect the biological productivity of wetlands ecosystems by smothering, by dewatering, by permanently flooding, or by altering substrate elevation or periodicity of water movement. The addition of dredged or fill material may destroy wetland vegetation or result in advancement of succession to dry land species. It may reduce or eliminate nutrient exchange by a reduction of the system’s productivity, or by altering current patterns and velocities. Disruption or elimination of the wetland system can degrade water quality by obstructing circulation patterns that flush large expanses of wetland systems, by interfering with the filtration function of wetlands, or by changing the aquifer recharge capability of a wetland. Discharges can also change the wetland habitat value for fish and wildlife as discussed in subpart D. When disruptions in flow and circulation patterns occur, apparently minor loss of wetland acreage may result in major losses through secondary impacts. Discharging fill material in wetlands as part of municipal, industrial or recreational development may modify the capacity of wetlands to retain and store floodwaters and to serve as a buffer zone shielding upland areas from wave actions, storm damage and erosion.

Sec. 230.42 Mud flats.

(a) Mud flats are broad flat areas along the sea coast and in coastal rivers to the head of tidal influence and in inland lakes, ponds, and riverine systems. When mud flats are inundated, wind and wave action may re-suspend bottom sediments. Coastal mud flats
are exposed at extremely low tides and inundated at high tides with the water table at or near the surface of the substrate. The substrate of mud flats contains organic material and particles smaller in size than sand. They are either un-vegetated or vegetated only by algal mats. (b) Possible loss of values: The discharge of dredged or fill material can cause changes in water circulation patterns which may permanently flood or dewater the mud flat or disrupt periodic inundation, resulting in an increase in the rate of erosion or accretion. Such changes can deplete or eliminate mud flat biota, foraging areas, and nursery areas. Changes in inundation patterns can affect the chemical and biological exchange and decomposition process occurring on the mud flat and change the deposition of suspended material affecting the productivity of the area. Changes may reduce the mud flat's capacity to dissipate storm surge runoff.

Sec. 230.43 Vegetated shallows. (a) Vegetated shallows are permanently inundated areas that under normal circumstances support communities of rooted aquatic vegetation, such as turtle grass and eelgrass in estuarine or marine systems as well as a number of freshwater species in rivers and lakes. (b) Possible loss of values: The discharge of dredged or fill material can smother vegetation and benthic organisms. It may also create unsuitable conditions for their continued vigor by: (1) Changing water circulation patterns; (2) releasing nutrients that increase undesirable algal populations; (3) releasing chemicals that adversely affect plants and animals; (4) increasing turbidity levels, thereby reducing light penetration and hence photosynthesis; and (5) changing the capacity of a vegetated shallow to stabilize bottom materials and decrease channel shoaling. The discharge of dredged or fill material may reduce the value of vegetated shallows as nesting, spawning, nursery, cover, and forage areas, as well as their value in protecting shorelines from erosion and wave actions. It may also encourage the growth of nuisance vegetation.

Sec. 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous or siliceous materials, produced by the vital activities of anthozoan polyps or other invertebrate organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged or fill material can adversely affect colonies of reef building organisms by burying them, by releasing contaminants such as hydrocarbons into the water column, by reducing light penetration through the water, and by increasing the level of suspended particulates. Coral organisms are extremely sensitive to even slight reductions in light penetration or increases in suspended particulates. These adverse effects will cause a loss of productive colonies which in turn provide habitat for many species of highly specialized aquatic organisms.
Sec. 230.45 Riffle and pool complexes.

(a) Steep gradient sections of streams are sometimes characterized by riffle and pool complexes. Such stream sections are recognizable by their hydraulic characteristics. The rapid movement of water over a coarse substrate in riffles results in a rough flow, a turbulent surface, and high dissolved oxygen levels in the water. Pools are deeper areas associated with riffles. Pools are characterized by a slower stream velocity, a steaming flow, a smooth surface, and a finer substrate. Riffle and pool complexes are particularly valuable habitat for fish and wildlife.

(b) Possible loss of values: Discharge of dredged or fill material can eliminate riffle and pool areas by displacement, hydrologic modification, or sedimentation. Activities which affect riffle and pool areas and especially riffle/pool ratios, may reduce the aeration and filtration capabilities at the discharge site and downstream, may reduce stream habitat diversity, and may retard repopulation of the disposal site and downstream waters through sedimentation and the creation of unsuitable habitat. The discharge of dredged or fill material which alters stream hydrology may cause scouring or sedimentation of riffles and pools. Sedimentation induced through hydrological modification or as a direct result of the deposition of unconsolidated dredged or fill material may clog riffle and pool areas, destroy habitats, and create anaerobic conditions. Eliminating pools and meanders by the discharge of dredged or fill material can reduce water holding capacity of streams and cause rapid runoff from a watershed. Rapid runoff can deliver large quantities of flood water in a short time to downstream areas resulting in the destruction of natural habitat, high property loss, and the need for further hydraulic modification. Note: Possible actions to minimize adverse impacts on site or material characteristics can be found in subpart H.

Subpart F--Potential Effects on Human Use Characteristics

Note: The effects described in this subpart should be considered in making the factual determinations and the findings of compliance or non-compliance in subpart B.

Sec. 230.50 Municipal and private water supplies.

(a) Municipal and private water supplies consist of surface water or ground water which is directed to the intake of a municipal or private water supply system.

(b) Possible loss of values: Discharges can affect the quality of water supplies with respect to color, taste, odor, chemical content and suspended particulate concentration, in such a way as to reduce the fitness of the water for consumption. Water can be rendered unpalatable or unhealthy by the addition of suspended particulates, viruses and pathogenic organisms, and dissolved materials. The expense of removing such substances before the water is delivered for consumption can be high. Discharges may also affect the quantity of water available for municipal and private water supplies. In addition, certain commonly used water treatment chemicals have the potential for combining with some suspended or dissolved substances from dredged or fill material to form other products that can have a toxic effect on consumers.

Sec. 230.51 Recreational and commercial fisheries.

(a) Recreational and commercial fisheries consist of harvestable fish, crustaceans, shellfish, and other aquatic organisms used by man.
(b) Possible loss of values: The discharge of dredged or fill materials can affect the suitability of recreational and commercial fishing grounds as habitat for populations of consumable aquatic organisms. Discharges can result in the chemical contamination of recreational or commercial fisheries. They may also interfere with the reproductive success of recreational and commercially important aquatic species through disruption of migration and spawning areas. The introduction of pollutants at critical times in their life cycle may directly reduce populations of commercially important aquatic organisms or indirectly reduce them by reducing organisms upon which they depend for food. Any of these impacts can be of short duration or prolonged, depending upon the physical and chemical impacts of the discharge and the biological availability of contaminants to aquatic organisms.

Sec. 230.52 Water-related recreation.

(a) Water-related recreation encompasses activities undertaken for amusement and relaxation. Activities encompass two broad categories of use: consumptive, e.g., harvesting resources by hunting and fishing; and non-consumptive, e.g. canoeing and sight-seeing.

(b) Possible loss of values: One of the more important direct impacts of dredged or fill disposal is to impair or destroy the resources, which support recreation activities. The disposal of dredged or fill material may adversely modify or destroy water use for recreation by changing turbidity, suspended particulates, temperature, dissolved oxygen, dissolved materials, toxic materials, pathogenic organisms, quality of habitat, and the aesthetic qualities of sight, taste, odor, and color.

Sec. 230.53 Aesthetics.

(a) Aesthetics associated with the aquatic ecosystem consist of the perception of beauty by one or a combination of the senses of sight, hearing, touch, and smell. Aesthetics of aquatic ecosystems apply to the quality of life enjoyed by the general public and property owners.

(b) Possible loss of values: The discharge of dredged or fill material can mar the beauty of natural aquatic ecosystems by degrading water quality, creating distracting disposal sites, inducing inappropriate development, encouraging unplanned and incompatible human access, and by destroying vital elements that contribute to the compositional harmony or unity, visual distinctiveness, or diversity of an area. The discharge of dredged or fill material can adversely affect the particular features, traits, or characteristics of an aquatic area which make it valuable to property owners. Activities which degrade water quality, disrupt natural substrate and vegetational characteristics, deny access to or visibility of the resource, or result in changes in odor, air quality, or noise levels may reduce the value of an aquatic area to private property owners.

Sec. 230.54 Parks, national and historical monuments, national seashores, wilderness areas, research sites, and similar preserves.

(a) These preserves consist of areas designated under Federal and State laws or local ordinances to be managed for their aesthetic, educational, historical, recreational, or scientific value.

(b) Possible loss of values: The discharge of dredged or fill material into such areas may
modify the aesthetic, educational, historical, recreational and/or scientific qualities thereby reducing or eliminating the uses for which such sites are set aside and managed. Note: Possible actions to minimize adverse impacts regarding site or material characteristics can be found in subpart H.

Subpart G--Evaluation and Testing

Sec. 230.60 General evaluation of dredged or fill material.
The purpose of these evaluation procedures and the chemical and biological testing sequence outlined in Sec. 230.61 is to provide information to reach the determinations required by Sec. 230.11. Where the results of prior evaluations, chemical and biological tests, scientific research, and experience can provide information helpful in making a determination, these should be used. Such prior results may make new testing unnecessary. The information used shall be documented. Where the same information applies to more than one determination, it may be documented once and referenced in later determinations.

(a) If the evaluation under paragraph (b) indicates the dredged or fill material is not a carrier of contaminants, then the required determinations pertaining to the presence and effects of contaminants can be made without testing. Dredged or fill material is most likely to be free from chemical, biological, or other pollutants where it is composed primarily of sand, gravel, or other naturally occurring inert material. Dredged material so composed is generally found in areas of high current or wave energy such as streams with large bed loads or coastal areas with shifting bars and channels. However, when such material is discolored or contains other indications that contaminants may be present, further inquiry should be made.

(b) The extraction site shall be examined in order to assess whether it is sufficiently removed from sources of pollution to provide reasonable assurance that the proposed discharge material is not a carrier of contaminants. Factors to be considered include but are not limited to:

(1) Potential routes of contaminants or contaminated sediments to the extraction site, based on hydrographic or other maps, aerial photography, or other materials that show watercourses, surface relief, proximity to tidal movement, private and public roads, location of buildings, municipal and industrial areas, and agricultural or forest lands.

(2) Pertinent results from tests previously carried out on the material at the extraction site, or carried out on similar material for other permitted projects in the vicinity. Materials shall be considered similar if the sources of contamination, the physical configuration of the sites and the sediment composition of the materials are comparable, in light of water circulation and stratification, sediment accumulation and general sediment characteristics. Tests from other sites may be relied on only if no changes have occurred at the extraction sites to render the results irrelevant.

(3) Any potential for significant introduction of persistent pesticides from land runoff or percolation;

(4) Any records of spills or disposal of petroleum products or substances designated as hazardous under section 311 of the Clean Water Act (See 40 CFR part 116);

(5) Information in Federal, State and local records indicating significant introduction of pollutants from industries, municipalities, or other sources, including types and amounts
of waste materials discharged along the potential routes of contaminants to the extraction site; and

(6) Any possibility of the presence of substantial natural deposits of minerals or other substances which could be released to the aquatic environment in harmful quantities by man-induced discharge activities.

c) To reach the determinations in Sec. 230.11 involving potential effects of the discharge on the characteristics of the disposal site, the narrative guidance in subparts C through F shall be used along with the general evaluation procedure in Sec. 230.60 and, if necessary, the chemical and biological testing sequence in Sec. 230.61. Where the discharge site is adjacent to the extraction site and subject to the same sources of contaminants, and materials at the two sites are substantially similar, the fact that the material to be discharged may be a carrier of contaminants is not likely to result in degradation of the disposal site. In such circumstances, when dissolved material and suspended particulates can be controlled to prevent carrying pollutants to less contaminated areas, testing will not be required.

d) Even if the Sec. 230.60(b) evaluation (previous tests, the presence of polluting industries and information about their discharge or runoff into waters of the U.S., bioinventories, etc.) leads to the conclusion that there is a high probability that the material proposed for discharge is a carrier of contaminants, testing may not be necessary if constraints are available to reduce contamination to acceptable levels within the disposal site and to prevent contaminants from being transported beyond the boundaries of the disposal site, if such constraints are acceptable to the permitting authority and the Regional Administrator, and if the potential discharger is willing and able to implement such constraints. However, even if tests are not performed, the permitting authority must still determine the probable impact of the operation on the receiving aquatic ecosystem. Any decision not to test must be explained in the determinations made under Sec. 230.11. Sec. 230.61 Chemical, biological, and physical evaluation and testing.

Note: The Agency is today proposing revised testing guidelines. The evaluation and testing procedures in this section are based on the 1975 section 404(b)(1) interim final Guidelines and shall remain in effect until the revised testing guidelines are published as final regulations.

(a) No single test or approach can be applied in all cases to evaluate the effects of proposed discharges of dredged or fill materials. This section provides some guidance in determining which test and/or evaluation procedures are appropriate in a given case. Interim guidance to applicants concerning the applicability of specific approaches or procedures will be furnished by the permitting authority.

(b) Chemical-biological interactive effects. The principal concerns of discharge of dredged or fill material that contain contaminants are the potential effects on the water column and on communities of aquatic organisms.

(1) Evaluation of chemical-biological interactive effects. Dredged or fill material may be excluded from the evaluation procedures specified in paragraphs (b)(2) and (3) of this section if it is determined, on the basis of the evaluation in Sec. 230.60, that the likelihood of contamination by contaminants is acceptably low, unless the permitting authority, after evaluating and considering any comments received from the Regional Administrator, determines that these procedures are necessary. The Regional Administrator may require, on a case-by-case basis, testing approaches and procedures by
stating what additional information is needed through further analyses and how the results of the analyses will be of value in evaluating potential environmental effects. If the General Evaluation indicates the presence of a sufficiently large number of chemicals to render impractical the identification of all contaminants by chemical testing, information may be obtained from bioassays in lieu of chemical tests.

(2) Water column effects.

(i) Sediments normally contain constituents that exist in various chemical forms and in various concentrations in several locations within the sediment. An elutriate test may be used to predict the effect on water quality due to release of contaminants from the sediment to the water column. However, in the case of fill material originating on land which may be a carrier of contaminants, a water leachate test is appropriate.

(ii) Major constituents to be analyzed in the elutriate are those deemed critical by the permitting authority, after evaluating and considering any comments received from the Regional Administrator, and considering results of the evaluation in Sec. 230.60. Elutriate concentrations should be compared to concentrations of the same constituents in water from the disposal site. Results should be evaluated in light of the volume and rate of the intended discharge, the type of discharge, the hydrodynamic regime at the disposal site, and other information relevant to the impact on water quality. The permitting authority should consider the mixing zone in evaluating water column effects. The permitting authority may specify bioassays when such procedures will be of value.

(3) Effects on benthos. The permitting authority may use an appropriate benthic bioassay (including bioaccumulation tests) when such procedures will be of value in assessing ecological effects and in establishing discharge conditions.

(c) Procedure for comparison of sites.

(1) When an inventory of the total concentration of contaminants would be of value in comparing sediment at the dredging site with sediment at the disposal site, the permitting authority may require a sediment chemical analysis. Markedly different concentrations of contaminants between the excavation and disposal sites may aid in making an environmental assessment of the proposed disposal operation. Such differences should be interpreted in terms of the potential for harm as supported by any pertinent scientific literature.

(2) When an analysis of biological community structure will be of value to assess the potential for adverse environmental impact at the proposed disposal site, a comparison of the biological characteristics between the excavation and disposal sites may be required by the permitting authority. Biological indicator species may be useful in evaluating the existing degree of stress at both sites. Sensitive species representing community components colonizing various substrate types within the sites should be identified as possible bioassay organisms if tests for toxicity are required. Community structure studies should be performed only when they will be of value in determining discharge conditions. This is particularly applicable to large quantities of dredged material known to contain adverse quantities of toxic materials. Community studies should include benthic organisms such as microbiota and harvestable shellfish and finfish. Abundance, diversity, and distribution should be documented and correlated with substrate type and other appropriate physical and chemical environmental characteristics.

(d) Physical tests and evaluation. The effect of a discharge of dredged or fill material on physical substrate characteristics at the disposal site, as well as on the water circulation,
fluctuation, salinity, and suspended particulates content there, is important in making factual determinations in Sec. 230.11. Where information on such effects is not otherwise available to make these factual determinations, the permitting authority shall require appropriate physical tests and evaluations as are justified and deemed necessary. Such tests may include sieve tests, settleability tests, compaction tests, mixing zone and suspended particulate plume determinations, and site assessments of water flow, circulation, and salinity characteristics.

Subpart H--Actions To Minimize Adverse Effects
Note: There are many actions which can be undertaken in response to Sec. 203.10(d) to minimize the adverse effects of discharges of dredged or fill material. Some of these, grouped by type of activity, are listed in this subpart.

Sec. 230.70 Actions concerning the location of the discharge.
The effects of the discharge can be minimized by the choice of the disposal site. Some of the ways to accomplish this are by:

(a) Locating and confining the discharge to minimize smothering of organisms;

(b) Designing the discharge to avoid a disruption of periodic water inundation patterns;

(c) Selecting a disposal site that has been used previously for dredged material discharge;

(d) Selecting a disposal site at which the substrate is composed of material similar to that being discharged, such as discharging sand on sand or mud on mud;

(e) Selecting the disposal site, the discharge point, and the method of discharge to minimize the extent of any plume;

(f) Designing the discharge of dredged or fill material to minimize or prevent the creation of standing bodies of water in areas of normally fluctuating water levels, and minimize or prevent the drainage of areas subject to such fluctuations.

Sec. 230.71 Actions concerning the material to be discharged.
The effects of a discharge can be minimized by treatment of, or limitations on the material itself, such as:

(a) Disposal of dredged material in such a manner that physiochemical conditions are maintained and the potency and availability of pollutants are reduced.

(b) Limiting the solid, liquid, and gaseous components of material to be discharged at a particular site;

(c) Adding treatment substances to the discharge material;

(d) Utilizing chemical flocculants to enhance the deposition of suspended particulates in diked disposal areas.

Sec. 230.72 Actions controlling the material after discharge.
The effects of the dredged or fill material after discharge may be controlled by:

(a) Selecting discharge methods and disposal sites where the potential for erosion,
slumping or leaching of materials into the surrounding aquatic ecosystem will be reduced. These sites or methods include, but are not limited to:

(1) Using containment levees, sediment basins, and cover crops to reduce erosion;

(2) Using lined containment areas to reduce leaching where leaching of chemical constituents from the discharged material is expected to be a problem;

(b) Capping in-place contaminated material with clean material or selectively discharging the most contaminated material first to be capped with the remaining material;

(c) Maintaining and containing discharged material properly to prevent point and nonpoint sources of pollution;

(d) Timing the discharge to minimize impact, for instance during periods of unusual high water flows, wind, wave, and tidal actions.

Sec. 230.73 Actions affecting the method of dispersion.
The effects of a discharge can be minimized by the manner in which it is dispersed, such as:

(a) Where environmentally desirable, distributing the dredged material widely in a thin layer at the disposal site to maintain natural substrate contours and elevation;

(b) Orienting a dredged or fill material mound to minimize undesirable obstruction to the water current or circulation pattern, and utilizing natural bottom contours to minimize the size of the mound;

(c) Using silt screens or other appropriate methods to confine suspended particulate/turbidity to a small area where settling or removal can occur;

(d) Making use of currents and circulation patterns to mix, disperse and dilute the discharge;

(e) Minimizing water column turbidity by using a submerged diffuser system. A similar effect can be accomplished by submerging pipeline discharges or otherwise releasing materials near the bottom;

(f) Selecting sites or managing discharges to confine and minimize the release of suspended particulates to give decreased turbidity levels and to maintain light penetration for organisms;

(g) Setting limitations on the amount of material to be discharged per unit of time or volume of receiving water.

Sec. 230.74 Actions related to technology.
Discharge technology should be adapted to the needs of each site. In determining whether the discharge operation sufficiently minimizes adverse environmental impacts, the applicant should consider:

(a) Using appropriate equipment or machinery, including protective devices, and the use of such equipment or machinery in activities related to the discharge of dredged or fill material;
(b) Employing appropriate maintenance and operation on equipment or machinery, including adequate training, staffing, and working procedures;

(c) Using machinery and techniques that are especially designed to reduce damage to wetlands. This may include machines equipped with devices that scatter rather than mound excavated materials, machines with specially designed wheels or tracks, and the use of mats under heavy machines to reduce wetland surface compaction and rutting;

(d) Designing access roads and channel spanning structures using culverts, open channels, and diversions that will pass both low and high water flows, accommodate fluctuating water levels, and maintain circulation and faunal movement;

(e) Employing appropriate machinery and methods of transport of the material for discharge.

Sec. 230.75 Actions affecting plant and animal populations.
Minimization of adverse effects on populations of plants and animals can be achieved by:

(a) Avoiding changes in water current and circulation patterns which would interfere with the movement of animals;

(b) Selecting sites or managing discharges to prevent or avoid creating habitat conducive to the development of undesirable predators or species which have a competitive edge ecologically over indigenous plants or animals;

(c) Avoiding sites having unique habitat or other value, including habitat of threatened or endangered species;

(d) Using planning and construction practices to institute habitat development and restoration to produce a new or modified environmental state of higher ecological value by displacement of some or all of the existing environmental characteristics. Habitat development and restoration techniques can be used to minimize adverse impacts and to compensate for destroyed habitat. Use techniques that have been demonstrated to be effective in circumstances similar to those under consideration wherever possible. Where proposed development and restoration techniques have not yet advanced to the pilot demonstration stage, initiate their use on a small scale to allow corrective action if unanticipated adverse impacts occur;

(e) Timing discharge to avoid spawning or migration seasons and other biologically critical time periods;

(f) Avoiding the destruction of remnant natural sites within areas already affected by development.

Sec. 230.76 Actions affecting human use.
Minimization of adverse effects on human use potential may be achieved by:

(a) Selecting discharge sites and following discharge procedures to prevent or minimize any potential damage to the aesthetically pleasing features of the aquatic site (e.g. viewscapes), particularly with respect to water quality;

(b) Selecting disposal sites which are not valuable as natural aquatic areas;
(c) Timing the discharge to avoid the seasons or periods when human recreational activity associated with the aquatic site is most important;

(d) Following discharge procedures which avoid or minimize the disturbance of aesthetic features of an aquatic site or ecosystem;

(e) Selecting sites that will not be detrimental or increase incompatible human activity, or require the need for frequent dredge or fill maintenance activity in remote fish and wildlife areas;

(f) Locating the disposal site outside of the vicinity of a public water supply intake.

Sec. 230.77 Other actions.

(a) In the case of fills, controlling runoff and other discharges from activities to be conducted on the fill;

(b) In the case of dams, designing water releases to accommodate the needs of fish and wildlife;

(c) In dredging projects funded by Federal agencies other than the Corps of Engineers, maintain desired water quality of the return discharge through agreement with the Federal funding authority on scientifically defensible pollutant concentration levels in addition to any applicable water quality standards;

(d) When a significant ecological change in the aquatic environment is proposed by the discharge of dredged or fill material, the permitting authority should consider the ecosystem that will be lost as well as the environmental benefits of the new system.

Subpart I--Planning To Shorten Permit Processing Time

Sec. 230.80 Advanced identification of disposal areas.

(a) Consistent with these Guidelines, EPA and the permitting authority, on their own initiative or at the request of any other party and after consultation with any affected State that is not the permitting authority, may identify sites which will be considered as:

(1) Possible future disposal sites, including existing disposal sites and non-sensitive areas; or

(2) Areas generally unsuitable for disposal site specification;

(b) The identification of any area as a possible future disposal site should not be deemed to constitute a permit for the discharge of dredged or fill material within such area or a specification of a disposal site. The identification of areas that generally will not be available for disposal site specification should not be deemed as prohibiting applications for permits to discharge dredged or fill material in such areas. Either type of identification constitutes information to facilitate individual or General permit application and processing.

(c) An appropriate public notice of the proposed identification of such areas shall be
issued;

(d) To provide the basis for advanced identification of disposal areas, and areas unsuitable for disposal, EPA and the permitting authority shall consider the likelihood that use of the area in question for dredged or fill material disposal will comply with these Guidelines. To facilitate this analysis, EPA and the permitting authority should review available water resources management data including data available from the public, other Federal and State agencies, and information from approved Coastal Zone Management programs and River Basin Plans;

(e) The permitting authority should maintain a public record of the identified areas and a written statement of the basis for identification.
Memorandum: Appropriate Level of Analysis Required for Evaluating Compliance with the Section 404(b)(1) Guidelines Alternatives Requirements

1. PURPOSE:

The purpose of this memorandum is to clarify the appropriate level of analysis required for evaluating compliance with the Clean Water Act Section 404(b)(1) Guidelines’ (Guidelines) requirements for consideration of alternatives. 40 CFR 230.10(a). Specifically, this memorandum describes the flexibility afforded by the Guidelines to make regulatory decisions based on the relative severity of the environmental impact of proposed discharges of dredged or fill material into waters of the United States.

a. Analysis Associated with Minor Impacts:

The Guidelines do not contemplate that the same intensity of analysis will be required for all types of projects but instead envision a correlation between the scope of the evaluation and the potential extent of adverse impacts on the aquatic environment. The introduction to Section 230.10(a) recognizes that the level of analysis required may vary with the nature and complexity of each individual case:

Although all requirements in § 230.10 must be met, the compliance evaluation procedures will vary to reflect the seriousness of the potential for adverse impacts on the aquatic ecosystems posed by specific dredged or fill material discharge activities.

40 CFR 230.10

Similarly, Section 230.6 ("Adaptability") makes clear that the Guidelines:

allow evaluation and documentation for a variety of activities, ranging from those with large, complex impacts on the aquatic environment to those for which the impact is likely to be innocuous. It is unlikely that the Guidelines will apply in their entirety to any one activity, no matter how complex. It is anticipated that substantial numbers of permit applications will be for minor, routine activities that have little, if any, potential for significant degradation of the aquatic environment. It generally is not intended or expected that extensive testing, evaluation or analysis will be needed to make findings of compliance in such routine cases.

40 CFR 230.6(9) (emphasis added)

Section 230.6 also emphasizes that when making determinations of compliance with the Guidelines, users:

must recognize the different levels of effort that should be associated with varying degrees of impact and require or prepare commensurate documentation. The level of documentation should reflect the significance and complexity of the discharge activity.

40 CFR 230.6(b) (emphasis added)

Consequently, the Guidelines clearly afford flexibility to adjust the stringency of the alternatives review for projects that would have only minor impacts. Minor impacts are associated with activities that generally would have little potential to degrade the aquatic environment and include one, and frequently more, of the following characteristics: are located in aquatic resources of limited natural function; are small in size and...
cause little direct impact; have little potential for secondary or cumulative impacts; or cause only temporary
impacts. It is important to recognize, however, that in some circumstances even small or temporary fills result
in substantial impacts, and that in such cases a more detailed evaluation is necessary. The Corps Districts and
EPA Regions will, through the standard permit evaluation process, coordinate with the U.S. Fish and Wildlife
Service, National Marine Fisheries Service and other appropriate state and Federal agencies in evaluating the
likelihood that adverse impacts would result from a particular proposal. It is not appropriate to consider
compensatory mitigation in determining whether a proposed discharge will cause only minor impacts for
purposes of the alternatives analysis required by Section 230.10(a).

In reviewing projects that have the potential for only minor impacts on the aquatic environment, Corps and
EPA field offices are directed to consider, in coordination with state and Federal resource agencies, the
following factors:

i. Such projects by their nature should not cause or contribute to significant degradation individually or
cumulatively. Therefore, it generally should not be necessary to conduct or require detailed analyses to
determine compliance with Section 230.10(c).

ii. Although sufficient information must be developed to determine whether the proposed activity is in
fact the least damaging practicable alternative, the Guidelines do not require an elaborate search for
practicable alternatives if it is reasonably anticipated that there are only minor differences between
the environmental impacts of the proposed activity and potentially practicable alternatives. This
decision will be made after consideration of resource agency comments on the proposed project. It
often makes sense to examine first whether potential alternatives would result in no identifiable or
discernible difference in impact on the aquatic ecosystem. Those alternatives that do not may be
eliminated from the analysis since Section 230.10(a) of the Guidelines only prohibits discharges when a
practicable alternative exists which would have less adverse impact on the aquatic ecosystem. Because
evaluating practicability is generally the more difficult aspect of the alternatives analysis, this approach
should save time and effort for both the applicant and the regulatory agencies. By initially focusing the
alternatives analysis on the question of impacts on the aquatic ecosystem, it may be possible to limit
(or in some instances eliminate altogether) the number of alternatives that have to be evaluated for
practicability.

iii. When it is determined that there is no identifiable or discernible difference in adverse impact on the
environment between the applicant's proposed alternative and all other practicable alternatives, then
the applicant's alternative is considered as satisfying the requirements of Section 230.10(a).

iv. Even where a practicable alternative exists that would have less adverse impact on the aquatic
ecosystem, the Guidelines allow it to be rejected if it would have "other significant adverse
environmental consequences." 40 CFR 230.10(a). As explained in the preamble, this allows for
consideration of "evidence of damages to other ecosystems in deciding whether there is a 'better'
alternative." Hence, in applying the alternatives analysis required by the Guidelines, it is not
appropriate to select an alternative where minor impacts on the aquatic environment are avoided at
the cost of substantial impacts to other natural environmental values.

v. In cases of negligible or trivial impacts (e.g., small discharges to construct individual driveways), it may
be possible to conclude that no alternative location could result in less adverse impact on the aquatic
environment within the meaning of the Guidelines. In such cases, it may not be necessary to conduct
an offsite alternatives analysis but instead require only any practicable onsite minimization.

This guidance concerns application of the Section 404(b)(1) Guidelines to projects with minor impacts. Projects
which may cause more than minor impacts on the aquatic environment, either individually or cumulatively,
should be subjected to a proportionately more detailed level of analysis to determine compliance or
noncompliance with the Guidelines. Projects which cause substantial impacts, in particular, must be
thoroughly evaluated through the standard permit evaluation process to determine compliance with all provisions of the Guidelines.

b. Relationship between the Scope of Analysis and the Scope/Cost of the Proposed Project:

The Guidelines provide the Corps and EPA with discretion for determining the necessary level of analysis to support a conclusion as to whether or not an alternative is practicable. Practicable alternatives are those alternatives that are "available and capable of being done after taking into consideration cost, existing technology, and logistics in light of overall project purposes." 40 CFR 230.10(a)(2). The preamble to the Guidelines provides clarification on how cost is to be considered in the determination of practicability:

Our intent is to consider those alternatives which are reasonable in terms of the overall scope/cost of the proposed project. The term economic [for which the term "cost" was substituted in the final rule] might be construed to include consideration of the applicant's financial standing, or investment, or market share, a cumbersome inquiry which is not necessarily material to the objectives of the Guidelines.

Therefore, the level of analysis required for determining which alternatives are practicable will vary depending on the type of project proposed. The determination of what constitutes an unreasonable expense should generally consider whether the projected cost is substantially greater than the costs normally associated with the particular type of project. Generally, as the scope/cost of the project increases, the level of analysis should also increase. To the extent the Corps obtains information on the costs associated with the project, such information may be considered when making a determination of what constitutes an unreasonable expense.

The preamble to the Guidelines also states that "[i]f an alleged alternative is unreasonably expensive to the applicant, the alternative is not 'practicable.'" Guidelines Preamble, "Economic Factors", 45 Federal Register 85343 (December 24, 1980). Therefore, to the extent that individual homeowners and small businesses may typically be associated with small projects with minor impacts, the nature of the applicant may also be a relevant consideration in determining what constitutes a practicable alternative. It is important to emphasize, however, that it is not a particular applicant's financial standing that is the primary consideration for determining practicability, but rather characteristics of the project and what constitutes a reasonable expense for these projects that are most relevant to practicability determinations.

4. The burden of proof to demonstrate compliance with the Guidelines rests with the applicant; where insufficient information is provided to determine compliance, the Guidelines require that no permit be issued. 40 CFR 230.12(a)(3)(iv).

5. A reasonable, common sense approach in applying the requirements of the Guidelines' alternatives analysis is fully consistent with sound environmental protection. The Guidelines clearly contemplate that reasonable discretion should be applied based on the nature of the aquatic resource and potential impacts of a proposed activity in determining compliance with the alternatives test. Such an approach encourages effective decisionmaking and fosters a better understanding and enhanced confidence in the Section 404 program.