<table>
<thead>
<tr>
<th>#</th>
<th>Grant ID</th>
<th>Title of Proposal</th>
<th>Organization</th>
<th>County Request ($)</th>
<th>Recommended ($)</th>
<th>Abstract</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>220-6375</td>
<td>Goose Lake Alum</td>
<td>Red Lake SWCD</td>
<td>80,000</td>
<td>120,000</td>
<td>East Goose Lake in White Bear Lake, MN, is not meeting state water quality standards for nutrients. Water quality studies conducted on East Goose Lake show that 80% of East Goose Lake's phosphorus loading is internal from lake sediments. The purpose of this alum treatment for East Goose Lake is to decrease the discharge of phosphorus to the White Bear Lake Watershed Treatment Plant from the 300s to the 100s. Addressing problems in East Goose Lake are important because it is part of the headwaters of Lambert Creek, tributary to East Vadnais Lake, which is the drinking water reservoir for more than 450,000 PA residents. This area is also identified by the Minnesota Department of Health Source Water Protection Area Map as High Priority.</td>
<td>88.0</td>
</tr>
<tr>
<td>2</td>
<td>220-6316</td>
<td>Stormwater Retrofit and Infiltration and Enhanced Ferric Filter</td>
<td>Becker SWCD</td>
<td>Becker</td>
<td>150,000</td>
<td>Common carp reduction within the West Branch of the Sunrise River chain of lakes will address multiple nutrient impairments. This project will remove 12,000 cap by box netting to achieve a carp biomass of 89 lbs/acre which is the threshold above which carp can impact water quality. Removals will occur in Martin & Typos Lakes (87% of effort) & Unisow Lake (~13% effort). Estimated pollutant reductions are 1,230 pounds of phosphorus per year. Cap removal goals in Martin & Typos Lakes are 50% complete & yielding statistically significant water quality improvement. Beginning in 2017, Legacy funds enabled removal of 1,100 kg cap, reducing biomass by 35%. Additionally, eight watershed BMPs have been or will soon be installed.</td>
<td>86.0</td>
</tr>
<tr>
<td>3</td>
<td>220-5613</td>
<td>Sunrise River Chain of Lakes Stormwater Management</td>
<td>Becker SWCD</td>
<td>Becker</td>
<td>148,000</td>
<td>The Steil Creek and Water Conservation District (SWCD) will partner with the Buffalo Red River Watershed District (BRRWDD), the Natural Resources Conservation Service, and landowners to install 10 grade stabilization structures (side[es] of road) or similar conservation practices to stabilize high priority gullies that are contributing sediment to the Buffalo River. When these 10 gullies are stabilized, sediment loading to the Buffalo River will be reduced by 100 tons per year.</td>
<td>80.0</td>
</tr>
<tr>
<td>4</td>
<td>220-6191</td>
<td>Buffalo River Grade Stabilization Project</td>
<td>Clay SWCD</td>
<td>Clay</td>
<td>165,600</td>
<td>The Big Stone Soil and Water Conservation District plans to install 30-40 water and sediment control basins (WASCoBs) and other alternative practices like cover crops, no till/strip till within the Five Mile Creek subwatershed. These practices will contribute to 25% reduction in phosphorus and 50% in total nitrogen.</td>
<td>85.0</td>
</tr>
<tr>
<td>5</td>
<td>220-7180</td>
<td>Lake Wassermanm Internal Drainage Control</td>
<td>Minnesota Creek MD</td>
<td>Morris</td>
<td>284,720</td>
<td>The Wasserman Internal Load Management Project is the next phase in a multi-year strategy to restore Wasserman Lake. The Wasserman Lake Total Maximum Daily Load attributes 155 pounds per year of phosphorus to internal loading, requiring an 88% reduction. By implementing a lifestyle change in the project area, the Wasserman Lake Watershed District (District) will be able to achieve an estimated 78% reduction of internal sediment (phosphorus release), effectively addressing the largest contributing factor to Wasserman Lake's Impairment.</td>
<td>86.0</td>
</tr>
<tr>
<td>6</td>
<td>220-4911</td>
<td>Red Lake SWCD</td>
<td>Red Lake</td>
<td>Anoka</td>
<td>274,275</td>
<td>This project will reduce sediment and nutrient loading by an estimated 237 tons of sediment and 201 pounds of phosphorus while improving in-stream and riparian habitat by restoring a 1.5-mile corridor of Comfort Creek in Andover, MN. Actively eroding stream banks will be stabilized via bioengineering practices such as toe wood, root wads, brush mattresses, bank re-shaping, and planting with native pollinator-friendly aquatic vegetation. Hard-armoring practices will be restricted to areas where bridge abutments to protect existing infrastructure. Cross vases and other in-channel structures will also be installed to reduce cross-channel erosion and improve channel heterogeneity.</td>
<td>84.0</td>
</tr>
<tr>
<td>7</td>
<td>220-7054</td>
<td>Forest Lake WD</td>
<td>Zumb建华 Creek WD</td>
<td>Zumb建华</td>
<td>395,000</td>
<td>This project will reduce stormwater and nutrient loading by an estimated 237 tons of sediment and 201 pounds of phosphorus while improving in-stream and riparian habitat by restoring a 1.5-mile corridor of Comfort Creek in Andover, MN. Actively eroding stream banks will be stabilized via bioengineering practices such as toe wood, root wads, brush mattresses, bank re-shaping, and planting with native pollinator-friendly aquatic vegetation. Hard-armoring practices will be restricted to areas where bridge abutments to protect existing infrastructure. Cross vases and other in-channel structures will also be installed to reduce cross-channel erosion and improve channel heterogeneity.</td>
<td>83.0</td>
</tr>
<tr>
<td>8</td>
<td>220-4231</td>
<td>South Branch Wild Rice Sediment Reduction Project - Phase I</td>
<td>Becker SWCD</td>
<td>Becker</td>
<td>470,428</td>
<td>The South Branch Wild Rice sediment removal project will continue the targeted placement of structural and ecological best management practices addressing erosion and subsurface and sediment nutrient loading to the South Branch of the Wild Rice River in Becker County. With 47 targeted site-appropriate combinations of structural and ecological practices including Grade Stabilizations, Water and Sediment Control Basins, Grassed Waterways, Filter Strips, Wetland Restorations and Critical Area Plantings, this project is expected to accomplish a 32% reduction in total suspended solids loading from the lower Wild Rice River Watershed's total daily load.</td>
<td>80.0</td>
</tr>
<tr>
<td>9</td>
<td>220-7133</td>
<td>Spectacle Lake Focus Area</td>
<td>Irving SWCD</td>
<td>Irving</td>
<td>95,532</td>
<td>Spectacle Lake is locally referred to as the "gem of Irving County" and it has been identified as the second most likely lake in the Minnesota watershed to see substantial declines in water clarity with increasing nutrient loads. In the interest of protecting the health of this regionally popular lake, this proposal will install a treatment train of three bioremediation basins and up to 15,000 square feet of additional near-shore stormwater reduction practices. This proposal will work in concert with work being done by Irving County Zoning to develop more restrictive shoreline ordinances and includes continued engagement of residents and local government officials. A 21-foot phosphorus reduction goal has been set in efforts to protect the lake. The proposed projects reduce phosphorus by 12% and 63% of the goal.</td>
<td>87.0</td>
</tr>
<tr>
<td>10</td>
<td>220-4112</td>
<td>River Park Stormwater Improvement</td>
<td>Brooklyn Park,</td>
<td>Brooklyn Park,</td>
<td>250,000</td>
<td>The River Park Stormwater Improvement Program is expected to reduce phosphorus and sediment loading to Trout Lake. Reducing phosphorus loads to the lake is a priority of the Minnesota Department of Natural Resources, the Illinois Local Water Management Plan, and has the support of local citizens, the lake association, the Greenway Recreational Boat Club, and City of Cottage Grove and came out of recommendations in a 2018 study. Polluted runoff will be re-routed to surface stormwater practices for treatment and infiltration in the rain gardens, swales, and planter boxes enhanced with native vegetation preventing 15 tons of sediment and 43 pounds of phosphorus from reaching Trout Lake annually.</td>
<td>83.0</td>
</tr>
<tr>
<td>11</td>
<td>220-7291</td>
<td>Comfort Lake Forest Lake WD</td>
<td>Washington Hi</td>
<td>Washington Hi</td>
<td>744,400</td>
<td>Forest Lake is one of the top recreational lakes in the metro area and the largest lake in Washington County. The water quality of Forest Lake also impacts downstream streams. While not currently on the impaired waters list, the water quality of Forest Lake is very near the water quality standard. Protection of Forest Lake Water quality is a high priority for the Comfort Lake- Forest Lake Watershed District (CLFWD), the City of Forest Lake, and the region. Washington Judicial Distich 6 (WOED) has been identified as the second largest contributor of total phosphorus to Forest Lake. This project proposes to treat 35% of the phosphorus runoff with an Olympic multi-cell enhanced sediment filter (ODE) treatment system. The headwaters of WOED is dominated by wetlands and contributes nearly half of the total phosphorus load in the WOED system, most of which is dissolved and difficult to remove with traditional best management practices (BMPs). This IESF will reduce phosphorus contributions to Forest Lake by 115 pounds per year.</td>
<td>84.0</td>
</tr>
<tr>
<td>12</td>
<td>220-7101</td>
<td>Phase 1 of Five Mile Creek and Marsh Lake Improvement Strategy</td>
<td>Big Stone SWCD</td>
<td>Big Stone</td>
<td>274,000</td>
<td>This project aims to install 13 wetland and water quality BMPs (WQMBPs) including the Five Mile Creek Watershed Project. Currently, 19 shovel ready WQMBPs have been designed with plans of reaching out to other landowners to implement similar practices. Using PTF/Map areas with medium to high sediment loss to the SWCD and the WQCD will target those landowners to implement projects. Five Mile Creek has a total sediment reduction goal of 25 percent (3,439 tons) and 12 percent (150 tons) phosphorus reduction goal. Marsh Lake has a sediment reduction goal of 25 percent (16,551 tons) and 25 percent (4,855 tons) phosphorus reduction goal. Phase 1 of this project will install 19 WQMBPs to reduce sediment by 132 tons per year and phosphorus by 39 pounds per year.</td>
<td>84.0</td>
</tr>
</tbody>
</table>

FY2020 Projects and Practices

<table>
<thead>
<tr>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.0</td>
</tr>
<tr>
<td>80.0</td>
</tr>
<tr>
<td>83.0</td>
</tr>
<tr>
<td>87.0</td>
</tr>
<tr>
<td>86.0</td>
</tr>
<tr>
<td>88.0</td>
</tr>
<tr>
<td>85.0</td>
</tr>
<tr>
<td>87.0</td>
</tr>
<tr>
<td>86.0</td>
</tr>
<tr>
<td>84.0</td>
</tr>
<tr>
<td>#</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1520-6395</td>
</tr>
<tr>
<td>1520-6400</td>
</tr>
<tr>
<td>1520-6355</td>
</tr>
<tr>
<td>1720-4093</td>
</tr>
<tr>
<td>1820-7176</td>
</tr>
<tr>
<td>1520-6034</td>
</tr>
<tr>
<td>2020-7189</td>
</tr>
<tr>
<td>2120-6093</td>
</tr>
<tr>
<td>2220-4094</td>
</tr>
<tr>
<td>2420-6211</td>
</tr>
<tr>
<td>2220-7137</td>
</tr>
<tr>
<td>2520-7155</td>
</tr>
<tr>
<td>2620-5793</td>
</tr>
<tr>
<td>2720-6045</td>
</tr>
</tbody>
</table>

FY2020 Projects and Practices

11/30/2019
Lake Ida & CD 23 AIG Streambank and Grade at Highview Avenue Lakes Protection Otter Tail High Priority

1. The Aitkin County Soil and Water Conservation District is striving to protect three priority lakes that provide deep, cold water habitat for cisco. This project will complete 19 projects that restore native vegetation along the wetland edge, repair 741’ of ditch, install 1 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.

2. The Lake Ida subwatershed is the highest priority for restoration and protection. A recent study identified a wetland as primary source of phosphorus to the lake. The proposed project will construct a 1,899’ channel installing 23 grade control features within the stream channel to address existing erosion problems.

3. Lakeville, plans to stabilize approximately 5,000 feet of eroding streambanks using approximately 1,100 feet of bank toe stabilization, 500 feet of bank armoring, and 3,400 feet of bank grading/stabilization and incision that is resulting in increased sediment in the creek water and an impact on biological communities. The Vermillion River Watershed Joint Powers Organization (VRWJPO), in partnership with the City of

4. The Lake of the Woods subwatershed is the highest priority for restoration and protection. A recent study identified a wetland as primary source of phosphorus to the lake. The proposed project will construct a 1,899’ channel along the wetted edge, repair 741’ of ditch, install 3 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.

5. The Aitkin County Soil and Water Conservation District is striving to protect three priority lakes that provide deep, cold water habitat for cisco. This project will complete 19 projects that restore native vegetation along the wetland edge, repair 741’ of ditch, install 1 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.

6. The Aitkin County Soil and Water Conservation District is striving to protect three priority lakes that provide deep, cold water habitat for cisco. This project will complete 19 projects that restore native vegetation along the wetland edge, repair 741’ of ditch, install 1 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.

7. The Aitkin County Soil and Water Conservation District is striving to protect three priority lakes that provide deep, cold water habitat for cisco. This project will complete 19 projects that restore native vegetation along the wetland edge, repair 741’ of ditch, install 1 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.

8. The Aitkin County Soil and Water Conservation District is striving to protect three priority lakes that provide deep, cold water habitat for cisco. This project will complete 19 projects that restore native vegetation along the wetland edge, repair 741’ of ditch, install 1 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.

9. The Aitkin County Soil and Water Conservation District is striving to protect three priority lakes that provide deep, cold water habitat for cisco. This project will complete 19 projects that restore native vegetation along the wetland edge, repair 741’ of ditch, install 1 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.

10. The Aitkin County Soil and Water Conservation District is striving to protect three priority lakes that provide deep, cold water habitat for cisco. This project will complete 19 projects that restore native vegetation along the wetland edge, repair 741’ of ditch, install 1 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.

11. The Aitkin County Soil and Water Conservation District is striving to protect three priority lakes that provide deep, cold water habitat for cisco. This project will complete 19 projects that restore native vegetation along the wetland edge, repair 741’ of ditch, install 1 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.

12. The Aitkin County Soil and Water Conservation District is striving to protect three priority lakes that provide deep, cold water habitat for cisco. This project will complete 19 projects that restore native vegetation along the wetland edge, repair 741’ of ditch, install 1 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.

13. The Aitkin County Soil and Water Conservation District is striving to protect three priority lakes that provide deep, cold water habitat for cisco. This project will complete 19 projects that restore native vegetation along the wetland edge, repair 741’ of ditch, install 1 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.

14. The Aitkin County Soil and Water Conservation District is striving to protect three priority lakes that provide deep, cold water habitat for cisco. This project will complete 19 projects that restore native vegetation along the wetland edge, repair 741’ of ditch, install 1 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.

15. The Aitkin County Soil and Water Conservation District is striving to protect three priority lakes that provide deep, cold water habitat for cisco. This project will complete 19 projects that restore native vegetation along the wetland edge, repair 741’ of ditch, install 1 stilling basin, and repair an existing sediment pond. Implementation will prevent 240 pounds of phosphorus per year from reaching Lake Ida.
<table>
<thead>
<tr>
<th>#</th>
<th>Grant ID</th>
<th>Title of Proposal</th>
<th>Organization</th>
<th>County</th>
<th>Request ($)</th>
<th>Recommended ($)</th>
<th>Abstract</th>
<th>Score</th>
</tr>
</thead>
</table>
