

Strategizing & Implementing a Soil Health Management System Module 9

Mike Kucera Agronomist

Goals

By the end of this lesson you will be able to:

 Identify key components of practices and activities to develop a Soil Health Management System

2. Describe the interaction, dependency and synergy between practices in a SHMS

- 3. Recognize barriers to implementation
- 4. Describe an entry level strategy to develop a SHMS

The 4 Principles that Conserve the Soil Ecosystem

- 1. Minimize Disturbance
- 2. Maximize Living Cover
- 3. Maximize Biodiversity
- 4. Maximize Continuous Living Roots

Soil Health Management System

Collection of NRCS conservation practices, BMPs, activities, that focus on maintaining or enhancing soil health

Address all 4 of the soil health principles

Create a "synergistic" effect

Cropping system specific

Best Accepted New Technology

- Conservation activities that might not be in an NRCS conservation practice standard. Examples:
- Companion cropping
- Traffic management
- Precision application of nutrients and pesticides
- Use of flotation tires

Soil Health Management System

- Achieving soil health through:
 - A Quality No-till/Strip-till System
 - Diverse and Strategic Cover Crops
 - Adapted Nutrient Management
 - Integrated Weed & Pest Management
 - Diverse Crop Rotations
 - Precision Farming Technology
 - Prescriptive Buffers

Soil Health is not a destination...it's a Journey

No-Till Planter Attachments

Crimp and Plant

Compounding extent of soil degradation and effect on other cycles

Denitrification:

 Anaerobic conditions cause Losses of N₂, NO and N₂O

Leaching

- Plenty of heat to convert ammonium to nitrate
- Nitrate leaves with the water
- Both applied and soil available N are at risk of loss

Nitrogen Mineralization and Immobilization

Biology

Effect of Tillage on Microbial Activity

Havlin et al. (1999)

Precision nutrient placement and rate

No-Till Planters

With Space Shuttle Tech

Cont No-Till Corn SB-Wheat Rotation 60 Bushel Soybeans

USDA United States Jeaner R52 Crary Air Reel

3110e 35 2:34 PM

Poly Skid Shoes

Harvesting Soybeans September 2013

Slide 38 2:34 PM

Home The Nozzles Accessories Test Data Testimonials Golf Course & Turf Choose the Right Nozzle Contact Us

Interchangeable Tip / Cap

Longer Wear Life

Proven TurboDrop® Technology

Part Numbers

TDXL/TDCXL11001
TDXL/TDCXL110015
TDXL/TDCXL11002
TDXL/TDCXL11003
TDXL/TDCXL11004
TDXL/TDCXL11005
TDXL/TDCXL11006
TDXL/TDCXL11008
TDXL/TDCXL11010

The most proven multi-purpose Venturi air injection nozzle

TurboDrop® XL Medium Pressure Nozzle (TDXL)

Wide Pressure Range:	TDXL 20-120psi TDCXL 30-150psi
Wide Drift Control Range:	Sizes 01-02: 20-60+ psi Sizes 025-04: 20-80+ psi Sizes 05-10: 20-100+ psi
Separate Injector (Venturi)	Comes apart by hand, easy to clean (no tools required).
Patented Stabilization Chamber	Even and uniform mixing of air with liquid which gives a tighter, more uniform droplet spectrum and a homogeneous spray solution across a wide operating range.
Excellent With Rate Controllers	$\label{thm:continuous} \mbox{Wide pressure range allows greatest speed variations}.$
Improved Coverage, Reduced Runoff	Air-filled droplets spread on the target surface rather than bouncing off.
Reduced Clogging	Round metering orifice versus elliptical slit.

used.

Two spray nozzles in one. Other tips may also be

Over 17 Years in 40 countries.

TDXL: 20-30,000 Acres

Description

110° Flat Fan Multi-purpose medium pressure air induction nozzle

20 - 120 psi Overall pressure range 30 - 90 psi Optimal pressure range

Estimated life (60' boom, 20" centers) 20,000 - 30,000 acres TDXL

50,000 - 80,000 acres TDCXL

Polyacetal Venturi body and SprayMax TipCap nozzle with EPDM seat gasket.

TDCYL has coramic metering crifice in

Roundup Resistant Waterhemp

New Herbicide for Resistant Weeds

- Enlist Weed Control system includes seeds that are genetically modified to tolerate the new herbicide from Dow, Enlist Duo.
- Enlist Duo contains 2,4-D that adds another mode of action to the glyphosate-based herbicides.
- Better protection against tougher weeds, which have been growing resistant to the glyphosate.
- Commercial application of the system requires both the new seed traits as well as the new herbicide to be approved by the regulatory authorities
- Corn production in 2014, for soybean production in 2015 and cotton production in 2016.

Drought and Heavy Rainfall Resilience

Strategically...CC should match desired C:N Ratio

Strategically...CC Should Complement the Following Crop

Corn into:

- High N (Protein)
- Cover Crop (Clover/Peas)
- Contributes high quality N
- Less likely to harbor disease pathogens

Strategically...CC Should Complement the Following Crop

Corn into a mix: High Carbon (Rye)

Provides:

- Erosion Control
- Moisture Savings

Uses/immobilizes:

- Nitrogen/ nutrients
- Disease?

Starter N a must!

Strategically...

- Soybeans do well into a high carbon Cover Crop.
 ...Why?
- Low nitrate conditions early, weed control, late season soil moisture and late season nutrient cycling (residue mineralization)

Slide 65 2:34 PM

Strategically...Planning the System Using the Step by Step Approach

1. Drill or Aerial Seed
Cereal Rye or
Annual Ryegrass
into Corn Stalks
(early maturing corn)

Strategically...Planning the System

2. Terminate the Cereal Rye at 12"...

Strategically...Planning the system

2. Plant a short season Soybean into the Cereal rye (preferably early in the season)

Strategically...Planning the system

3. Plant a low C:N mix into Soybean at senescence (oat, barley, radish, rapeseed, turnip)

Strategically...Planning the system

4. NT Corn into a:
Biologically active
high functioning

Strategically... Planning the system

5. Enjoy The Rewards of Soil Health!

SHMS Keys

- Implementation phase (compaction, residue breakdown slow, N-tie-up following wheat, equipment adjustments balling up residue in drill/planter)
- Planting depth, uniformity of stand important
- Residue Uniformity, PolySkids allow header to run on ground for soybeans without any problems with corn stalks; wheat stubble height, fall grazing on corn stubble
- Reduce weed pressure and disease with canopy & mulch cover, & rotate WS grass, WS broadleaf, CS grass
- Rotate herbicides and crops to minimize weed resistance (water hemp resistance biggest challenge)
- Keep sprayer in top condition (do your own spraying)

SHMS Keys

- Residue cover = money in hot dry conditions (need more residue as biology increases)
- Cover crops, C:N ratio 25, avoid brassica monoculture, limit water use, some years will not use cover crops, canopy and ground cover = less weeds and lower "E" in ET
- Uniform emergence is important (Corn 2-1/2; SB 1-1/2, Sorghum 2") (deeper than we used to, consider planting dates)
- Fertilizer mgt (gradually need less N fertilizer, split apply N on wheat for yields by first node, P starter for corn and SB, manage pH)

Questions

Mike Kucera Agronomist

